Seite - 144 - in Document Image Processing
Bild der Seite - 144 -
Text der Seite - 144 -
J. Imaging 2018,4, 15
Regarding the recognition ofOOVwords, the sub-word approach allowed correctly recognizing
42.4%±1.5of theOOVwords.
5%
10%
15%
20%
25%
30%
1 2 3 4 5 6
WER=17.9%
CER=4%
OOV WAR=21.5%
n-gram size Word Error Rate
Character Error Rate
OOV Word Accuracy Rate
Figure17.Resultsobtainedby theCRNNword-basedsystemusingn-gramlanguagemodelswith
sizen={1,. . . ,6}.
0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%
1 2 3 4 5 6
WER=14.8%
CER=3.4%
OOV WAR=42.4%
n-gram size Word Error Rate
Character Error Rate
OOV Word Accuracy Rate
Figure18.ResultsobtainedbytheCRNNsub-word-basedsystemusingn-gramlanguagemodelswith
sizen={1,. . . ,6}.
Figure19presents theresultsobtainedwith theCRNNsystemusingcharactern-gramLM.As in
thepreviouscharacter-basedexperiments, similar resultsareobtainedforn≥6,andtheoverallbest
resultwasobtainedwitha10-gramcharacter languagemodel (aWERequal to14.0%±0.3andaCER
equal to3.0%±0.1). RegardingtherecognitionofOOVwords, thisapproachwasable torecognize
correctly 69.2%±1.1 of theOOVwords using no external resource or dictionary, but a character
languagemodelonly.
Table 5 presents a summary of the obtained best results for the test experiments for
the CRNN system. As can be observed, the use of deep optical models allows one to obtain
astatistically-significantrelativeimprovementof59.2%overtheHMMsystem(43.9%±0.5) intermsof
WERand81.1%statistically-significant relative improvementover theHMMsystemintermsofCER.
RegardingOOVwords,21.5%ofOOVwords,whichcorrespondtowords followedbypunctuation
marks,arewell recognized. It shouldbenotedthat theseresultsarealsosignificantlybetter thanthose
obtainedbytheHMMsystemintheclosedvocabularyexperiments (Figures11–13).
Theuseofsub-wordunitsperformsbetter thanusingwords. In thiscase, theuseofa four-gram
LMtrainedwithhyphenatedwordsallowedobtaining statistically-significant improvementsover
theuseof a three-gramLMof fullwords. However, theoverall best results areobtainedbyusing
144
zurück zum
Buch Document Image Processing"
Document Image Processing
- Titel
- Document Image Processing
- Autoren
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2018
- Sprache
- deutsch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 216
- Schlagwörter
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Kategorie
- Informatik