Seite - 151 - in Document Image Processing
Bild der Seite - 151 -
Text der Seite - 151 -
J. Imaging 2018,4, 39
need todealwith is thenon-uniformityof theshapeandsizeof thecharacterswrittenbydifferent
writers.Alongwiththese,problemslikeskew,slantetc. arecommonlyseeninhandwrittendocuments.
Eventhepaperandinkqualitiesmakethingsmuchdifficult.Apart fromthe intrinsiccomplexitiesof
handwritings, similaritiesamongthecharactersbelongingtodifferentscriptaugment thechallenges
of script recognition fromthehandwrittendocument images. It isworthmentioning that, usually,
script recognition isperformedatpage, text-lineoratword level. But in thispaper, this isdoneat
word-levelbecauseof tworeasons: (a) featureextractionatword-level is less timeconsumingthanat
pageorat text-line leveland(b)sometimes, it is seenthatasingledocumentpageorasingle text line
containsmultiplescripts. In thatcase,word-level script identification isappropriate.
Script recognition articles for handwrittendocuments are relatively limited in comparison to
its printed counterpart. Ubul et al. [2] comprehensively showed the state-of-the-art performance
results for different identification, feature extraction and classificationmethodologies involved in
theprocess. Recently, Singhetal. [1]providedasurveyconsideringvarious featureextractionand
classificationtechniquesassociatedwith theofflinescript identificationof the Indicscripts. Spitz [3]
proposed a method for distinguishing between Asian and European languages by analysing the
connectedcomponents. Tanet al. [4]developedamethodbasedon textureanalysis for automatic
script identification fromdocument imagesusingmultiple channel (Gabor) filters andGray level
co-occurrencematrices(GLCM)forsevenlanguages:Chinese,English,Greek,Koreans,Malayalam,Persian
andRussian.Hochbergetal. [5,6]describedanalgorithmforscriptandlanguage identificationfrom
handwritten document images using statistical features based on connected component analysis.
Woodetal. [7]demonstratedaprojectionprofilemethodtodetermineRoman,Russian,Arabic,Korean
andChinesecharacters.Chaudhurietal. [8]discussedanOCRsystemtoreadtwoIndianlanguagesviz.,
BanglaandDevanagari (Hindi). Paletal. [9]proposedanalgorithmforword-wisescript identification
fromdocument containingEnglish,Devanagari andTelugu text, based on conventional andwater
reservoir features.Chaudhuryetal. [10]proposedamethodfor identificationof Indian languagesby
combiningGaborfilterbasedtechniquesanddirectiondistancehistogramclassifier forHindi,English,
Malayalam,Bengali,Telugu andUrdu. Someanalysis of thevariability involved in themulti-script
signaturerecognitionproblemascomparedto thesingle-script scenario isdiscussed in [11,12].
Variousclassificationalgorithmsareappliedfordifferentpatternrecognitionproblemsandthe
samefactalsoapplies to thescript recognitionproblem.Tilldate, for Indicscript recognitionpurpose,
differentclassifiershavebeenusedsuchask-NearestNeighbours (k-NN)[13,14],LinearDiscriminant
Analysis (LDA) [15],NeuralNetworks (NN) [15,16], SupportVectorMachine (SVM) [16,17], Tree
based classifier [18,19], Simple Logistic [20] andMLP [21,22]. Though good results have already
beenachieved in this pattern recognition taskbutwith a single classifier it is still hard to achieve
acceptableaccuracy. Studiesexpose that the fusionofmultipleclassifierscanbeaviablesolutionto
getbetterclassificationresultsas theerroramassedbyanysingleclassifier isgenerallycompensated
using information fromother classifiers. The reason for this is that different classifiersmayoffer
complementary informationabout thepatternsunderconsideration. Basedonthis fact, since long,
a section of researchers has focused ondevising different algorithms for combining classifiers in
an intelligentway so that the combination can achieve better results than any of the individual
classifier used for combining. The key idea is that instead of relying on a single decisionmaker,
all thedesignsor their subsets are applied for thedecisionmakingby combining their individual
beliefs in order to come upwith a consensus decision. This factmotivatesmany researchers to
apply the classifier combinationmethods to different pattern recognitionproblems. Thepopular
methodologies for classifier combination include: MajorityVoting [23,24], Subset-combining and
re-rankingapproach[25],Statisticalmodel [26],BayesianBelief Integration[27],Combinationbased
onDStheoryofevidence [27,28]andNeuralNetworkcombinator [29].
But tilldate, classifiercombinationapproachforscript recognitionproblem,eitherhandwritten
orprinted,hasnotbeentestedmuch, thoughithasenormouspotential. Tobridgethis researchgap,
thispaperappliesdifferent classifiercombination techniques in thefieldof Indic script recognition.
151
zurück zum
Buch Document Image Processing"
Document Image Processing
- Titel
- Document Image Processing
- Autoren
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2018
- Sprache
- deutsch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 216
- Schlagwörter
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Kategorie
- Informatik