Seite - 152 - in Document Image Processing
Bild der Seite - 152 -
Text der Seite - 152 -
J. Imaging 2018,4, 39
Themain contributionof thepresentwork is the comprehensive evaluationof themajor classifier
combinationapproacheswhichareeitherrulebasedorapplyasecondaryclassifier for information
fusion. Themotivation is to improvetheclassificationaccuracyat theword-levelhandwrittenscript
recognitionbycombiningtheresultsof thebestperformingclassifieronthreepreviouslyusedfeature
sets. It isamulti-classclassificationproblemandin thepresentcase,12officiallyused Indic-scriptsare
consideredwhichare:Devanagari,Bangla,Odia,Gujarati,Gurumukhi,Tamil,Telugu,Kannada,Malayalam,
Manipuri,UrduandRoman. Threedifferent setsof featurevectorsbasedonbothshapeandtexture
analysishavebeenestimatedfromeachof thehandwrittenwordimages. Identificationof thescripts
inwhich theword images arewritten, is donewith these featurevaluesby feeding the same into
differentMLPclassifiers. Soft-decisionsprovidedbythe individualclassifiersare thencombinedusing
anarrayof classifier combination techniques. This kindofwork is implemented for thefirst time
assumingthenumberof Indicscriptsundertakenandtherangeofcombinationtechniquesapplied.
Thesystemdevelopedfor thescript recognitiontaskhere, isapartof thegeneral frameworkwhere
different featuresetsandclassifieroutputscanbemodelledintoasinglesystemwithoutmuchincrease
in thecomputation involved. Blockdiagramof thepresentwork isshowninFigure1.
Figure1.Schematicdiagramof theproposedmethodology.
2. FeatureExtraction
In thispaper, threepopular featureextractionmethodologieshavebeenusedfor thecombination
namely,EllipticalFeatures [21],HistogramofOrientedGradients (HOG)[30]andModifiedlog-Gabor
filter transform[20]. Thefirst featureset isapplied tocapture theoverall structurepresent in thescript
wordimageswhereas therest twofeaturesetsdealwith the textureof thesame. These featureshave
alreadyprovidedsatisfactoryresults to thischallengingtaskofhandwrittenscript identification.
2.1. EllipticalFeatures
Thewordimagesaregenerally foundtobeelongated innaturewhichcanbettercoveredbyan
ellipse. That iswhy;elliptical featuresareextractedfromthecontourandthe local regionsofaword
image so that it is easier to isolate aparticular script. Twomore important notationsused in this
subsectionare: (a)Pixel ratio (Pr)and(b)Pixelcount (Pc). Pr isdefinedas theratioof thenumberof
contourpixels (object) to thenumberofbackgroundpixelsandthepixel countwhereasPc isdefined
as thenumberofcontourpixels. Thefeaturesaredescribed indetail:
2.1.1.MaximumInscribedEllipse
Theheightandwidthof theboundingboxarecalculatedforeachwordimage.Arepresentative
ellipse is theninscribed(consideringtheorientationof theellipse) inside thisboundingboxhaving
152
zurück zum
Buch Document Image Processing"
Document Image Processing
- Titel
- Document Image Processing
- Autoren
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2018
- Sprache
- deutsch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 216
- Schlagwörter
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Kategorie
- Informatik