Seite - 156 - in Document Image Processing
Bild der Seite - 156 -
Text der Seite - 156 -
J. Imaging 2018,4, 39
Thefieldofclassifiercombinationcanbegroupedintodifferentcategories [35]basedonthestage
atwhich theprocess isapplied, typeof information(classifieroutput)beingfusedandthenumber
andtypeofclassifiersbeingcombined.
Basedontheoperating levelof theclassifiers, classifiercombinationcanbedoneat the feature
level.Multiple featurescanbe joinedtoprovideanewfeaturesetwhichprovidemore information
about theclasses. Butwith the increase indimensionalityof thedata, trainingbecomesexpensive.
Theclassifieroutputsafter theextractionoftheindividual featuresetscanbecombinedtoprovide
better insightsat thedecision level.Decision level combinationtechniquesarepopularas it cannot
needanyunderstandingof the ideasbehindthe featuregenerationandclassificationalgorithms.
Feature level combination is performed by concatenating the feature sets in all possible
combinationsandpassing it throughthebaseclassifier,MLPin thiscase.Apart fromthat, all theother
combinationprocessesworkedoutoperateat thedecision level.
Classifier combination can also be classified by the outputs of the classifiers used in the
combination. Three typesofclassifieroutputsareusuallyconsidered[36]:
• Type I (Abstract level): This is the lowest level in a sense that the classifierprovides the least
amountof informationonthis level. Classifieroutput isasingleclass label informingthedecision
of theclassifier.
• Type II (Rank level): Classifier output on the rank level is an ordered sequence of candidate
classes, theso-calledn-best list. Thecandidateclassesareorderedfromthemost likelyclassat the
front and the least likely class index featuring at the last of the list. There are no confidence
scores attached to the class labels on rank level and the relative positioning provides the
required information.
• TypeIII (Measurement level): Inadditionto theorderedn-best listsofcandidateclassesonthe
rank level, classifieroutputon themeasurement levelhas confidencevaluesassigned toeach
entryof then-best list. Theseconfidences,orscores,aregenerallyrealnumbersgeneratedusing
the internalalgorithmfor theclassifier. Thissoft-decision informationat themeasurement level
thusprovidesmore informationthantheother levels.
In thispaper,TypeII (ranklevel)andTypeIII (measurement level) combinationproceduresare
workedoutbecause theyallowthe inculcationofagreaterdegreeofsoft-decision informationfrom
theclassifiersandfinduse inmostpracticalapplications.
The focus of this paper is to explore the classifier combination techniques on a fixed set of
classifiers. Thepurposeof thecombinationalgorithmis to learn thebehaviourof theseclassifiersand
produceanefficientcombinationfunctionbasedontheclassifieroutputs.Hence,weusenon-ensemble
classifier combinationswhich try to combineheterogeneous classifiers complementing eachother.
Theadvantageofcomplementaryclassifiers is thateachclassifiercanconcentrateon itsownsmall sub
problemandtogether thesingle largerproblemisbetterunderstoodandsolved. Theheterogeneous
classifiers,here, aregeneratedby training thesameclassifierwithdifferent featuresetsandtuning
themtooptimalvaluesof theirparameters. Thisproceduredoesawaywiththeneedfornormalization
of the confidence scores provided bydifferent classifierswhich donot tend to followa common
standardanddependof thealgorithm. Forexample, in theMLPclassifierusedhere, the last layerhas
eachnodecontainingafinalscore foroneclass. Thesescorescanthenbeusedfor therankleveland
decisionlevelcombinationalongwiththemaximumbeingchosenfor the individualclassifierdecision.
In the next sub-section, the set ofmajor classification algorithms evaluated in this paper are
categorized into two approaches based on how the combination process is implemented. In the
first approach, rule based combinationpractices are demonstrated that apply a given function to
combine theclassifierconfidences intoasinglesetofoutputscores. Thesecondapproachemploys
anotherclassifier, called the ‘secondary’ classifier thatoperateson theoutputsof thebaseclassifier
andautomaticallyaccount for thestrengthsof theparticipants. Theclassificationalgorithmis trained
on these confidence valueswith output classes same as the original pattern recognition problem.
156
zurück zum
Buch Document Image Processing"
Document Image Processing
- Titel
- Document Image Processing
- Autoren
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2018
- Sprache
- deutsch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 216
- Schlagwörter
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Kategorie
- Informatik