Seite - 160 - in Document Image Processing
Bild der Seite - 160 -
Text der Seite - 160 -
J. Imaging 2018,4, 39
First, theconfusionmatrix that isobtainedfromtheMLPbasedclassifieronthedatasetbyusing
MLGfeaturealongwith theoverall accuracy ispresented. Then, the result generatedby the same
classifierontheHOGandElliptical featuresetsappliedonthesamedataset isalsopresented.Results
have been cross-validated for the classifier parameter values to obtain the optimal results for the
datasetandthevaluesareprovidedin theresult section.
TheMLGfeatureset consistingof60 featurevalues forevery input image is fed into theMLP
classifierwith30hidden layerneuronsanda learningrateof0.8.Here,500 iterationsareallowedwith
anerror toleranceof0.1. Theoverall accuracyobtained is91.42%andtheconfusionmatrixgenerated
in this case isgiven inTable1. TheR columnin the table refers to the rejectionof the inputby the
recognitionmodulebut theclassconfidences thatareassociatedwith themgetaccountedforduring
thecombinationprocess.
TheHOGfeature set, consistingof80 featurevalues for every inputdata, is fed into theMLP
classifierwith40hiddenlayerneuronsanda learningrateof0.8. Sameerror toleranceandthenumber
of iterations,asapplied incaseofMLGfeatures,areallowedhere.Amaximumrecognitionaccuracy
of78.04%hasbeennoted. Theconfusionmatrix is showninTable2.
TheElliptical featureset containing58 featurevaluesderivedfromeach imagedata formsthe
training set for theMLP classifierwith 30 hidden neuronswith a learning rate of 0.7. The error
toleranceandnumberof iterations remain thesameas thepreviouscases. Anaccuracyof79.2%is
achievedandrepresented in theconfusionmatrixgiven inTable3.
Table1.Classificationresults forHOGfeaturesetwithMLPClassifier.
Class Class A B C D E F G H I J K L R
A 345 9 6 22 13 21 64 42 27 0 44 7 27
B 27 548 0 7 9 0 1 0 1 0 7 0 0
C 0 0 557 0 6 13 1 19 2 1 0 1 38
D 38 4 0 516 3 3 4 0 9 0 20 3 10
E 10 6 1 12 449 26 5 2 0 0 13 76 30
F 30 0 23 3 46 417 33 36 6 1 4 1 27
G 27 2 15 10 12 16 446 34 12 1 24 1 10
H 10 0 27 17 16 41 8 420 28 11 14 8 38
I 38 2 4 16 0 10 34 33 455 0 8 0 0
J 0 0 17 0 7 0 0 16 0 553 1 6 38
K 38 6 5 35 22 14 42 31 0 2 404 1 2
L 2 2 14 6 15 24 1 9 0 13 5 509 0
Table2.Classificationresults forMLGfeaturesetwithMLPClassifier.
Class Class A B C D E F G H I J K L R
A 528 0 2 13 1 1 19 9 5 0 12 10 0
B 0 576 0 6 0 0 0 0 0 0 3 15 1
C 1 0 596 0 0 0 1 1 1 0 0 0 2
D 2 9 0 574 0 0 0 0 1 0 0 14 0
E 0 0 0 0 592 6 0 1 0 0 0 1 0
F 0 0 2 0 16 553 0 20 0 9 0 0 4
G 4 0 9 3 0 1 528 15 26 0 10 4 7
H 7 0 5 0 5 30 8 512 16 1 8 8 12
I 12 0 7 1 0 0 12 2 560 0 4 2 0
J 0 0 0 0 3 4 0 5 0 588 0 0 19
K 19 3 1 7 2 0 24 2 4 0 527 11 3
L 3 2 25 29 24 9 4 21 18 4 13 448 0
160
zurück zum
Buch Document Image Processing"
Document Image Processing
- Titel
- Document Image Processing
- Autoren
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2018
- Sprache
- deutsch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 216
- Schlagwörter
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Kategorie
- Informatik