Seite - 168 - in Document Image Processing
Bild der Seite - 168 -
Text der Seite - 168 -
J. Imaging 2018,4, 39
5.Conclusions
Thisisthefirstapplicationofclassifiercombinationapproachesinthedomainofscriptrecognition
consideringthenumberofscriptsbeingundertakenandtherangeofclassifiercombinationprocedures
that are evaluated. Combination is performed at the feature level aswell as decision level using
abstract level, rank levelandmeasurement level informationprovidedbytheclassifiers. Encouraging
resultsareobtainedfromtheexperiments.Highaccuracies in therangeof95–98%havebeenachieved
byusing combination techniques as shown in thepreviousResult section. There is an increaseof
over7%withthebestperformingMLPclassifierwhenLogisticRegression isusedas thesecondary
classifier for7200samples from12different scripts. So, thismodelproves tobeuseful for thiscomplex
patternrecognitionproblemandmakesabetterdecisionbasedonthe informationprovidedbythe
baseclassifier.
Though, in thepresentwork, threesourcesof informationwithdifferent featuresetshavebeen
combinedusing their respective classifier resultsbut thisprocess canbeextended to includemore
inputsourcesalongwithdifferentclassifier.With the increase in thenumberofsources,an intelligent
anddynamicselectionprocedureneeds tobeemployedinorder to facilitatecombination inamore
meaningfulway. The combination being an overhead to the classification task, it is important to
developmethods that can indicate if the combinationwouldworkor not qualitatively. In future,
theworkcanbeextendedforalargerdatasetsothattherobustnessoftheprocedurescanbeestablished.
Thescriptrecognitionsystemhereisageneral frameworkwhichcanbeappliedtoothersimilarpattern
recognition tasks likeblockandline level recognitionofscripts toestablish itsusefulness indocument
analysis research.
Acknowledgments:Theauthorsarethankful totheCenter forMicroprocessorApplicationforTrainingEducation
andResearch(CMATER) andProjectonStorageRetrievalandUnderstandingofVideoforMultimedia (SRUVM)
ofComputerScienceandEngineeringDepartment, JadavpurUniversity, forproviding infrastructure facilities
duringprogressof thework. Theauthorsof thispaperarealso thankful toall those individualswhowillingly
contributed indevelopingthehandwritten Indicscriptdatabaseusedin thecurrent research.
Author Contributions: Anirban Mukhopadhyay and Pawan Kumar Singh conceived and designed
the experiments; Anirban Mukhopadhyay performed the experiments; Anirban Mukhopadhyay and
PawanKumarSinghanalyzedthedata;RamSarkaramdMitaNasipuri contributedreagents/materials/analysis
tools;AnirbanMukhopadhyayandPawanKumarSinghwrote thepaper.
Conflictsof Interest:Theauthorsdeclarenoconflictof interest. The foundingsponsorshadnorole in thedesign
of the study; in the collection, analyses, or interpretationofdata; in thewritingof themanuscript and in the
decisiontopublish theresults.
References
1. Singh,P.K.;Sarkar,R.;Nasipuri,M.OfflineScript IdentificationfromMultilingual Indic-scriptDocuments:
Astate-of-the-art.Comput. Sci. Rev. 2015,15–16, 1–28. [CrossRef]
2. Ubul,K.; Tursun,G.;Aysa,A.; Impedovo,D.; Pirlo,G.;Yibulayin,T. Script IdentificationofMulti-Script
Documents:ASurvey. IEEEAccess2017,5, 6546–6559. [CrossRef]
3. Spitz,A.L.Determinationof thescriptandlanguagecontentofdocument images. IEEETrans. PatternAnal.
Mach. Intell. 1997,19, 234–245. [CrossRef]
4. Tan,T.N.RotationInvariantTextureFeaturesandtheiruse inAutomaticScript Identification. IEEETran.
PatternAnal.Mach. Intell. 1998,20, 751–756. [CrossRef]
5. Hochberg, J.;Kelly,P.;Thomas,T.;Kerns,L.Automaticscript identificationfromdocument imagesusing
cluster-basedtemplates. IEEETrans. PatternAnal.Mach. Intell. 1997,19, 176–181. [CrossRef]
6. Hochberg, J.;Bowers,K.;Cannon,M.;Keely,P.Scriptandlanguageidentificationforhand-writtendocument
images. IJDAR1999,2, 45–52. [CrossRef]
7. Wood, S.; Yao, X.; Krishnamurthi, K.; Dang, L. Language identification for printed text independent of
segmentation. InProceedingsof the InternationalConferenceonImageProcessing,Washington,DC,USA,
23–26October1995;pp.428–431.
168
zurück zum
Buch Document Image Processing"
Document Image Processing
- Titel
- Document Image Processing
- Autoren
- Ergina Kavallieratou
- Laurence Likforman-Sulem
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2018
- Sprache
- deutsch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-106-1
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 216
- Schlagwörter
- document image processing, preprocessing, binarizationl, text-line segmentation, handwriting recognition, indic/arabic/asian script, OCR, Video OCR, word spotting, retrieval, document datasets, performance evaluation, document annotation tools
- Kategorie
- Informatik