Seite - 162 - in Emerging Technologies for Electric and Hybrid Vehicles
Bild der Seite - 162 -
Text der Seite - 162 -
Energies 2017,10, 5
This cycle is repeateduntil thebattery is fullydischarged. Datapoints (includingcurrent, voltage,
charging capacity and discharging capacity) are collectedwith the sampling frequency of 1Hz.
Therelevantvoltageandcurrentprofilesof thedischargingpulse-rest testduringthe66%–64%SoC
interval areplotted in thebottomsubfigureof Figure 1. The chargingpulse-rest test is conducted
similarly, that is it beginswitha fully-dischargedbattery, thenchargedat a2%SoC stepwithC/2
constant current and followedbya restperiod. Inorder to eliminate thepolarizationvoltage, the
OCVvaluesareextractedat theendofeachrestperiod. Tooshort a rest time leads toa largeOCV
estimationerror,whereas too longarest timemakes thewhole test timeconsuming. Ithasbeenshown
previously that for the lithium-ionpolymerbatteries, electrochemical reactionsarenegligibleaftera
2-hrestperiod[47,48]. Therefore, therest time in thispaper ispredeterminedas2h.
2.2. ParameterEstimationAlgorithm
Theelectricalbehaviorof theECMisexpressedas the followingstatespace formalism:
[
dVRC,short/dt
dVRC,long/dt ]
= [
−1/RshortCshort 0
0 −1/RlongClong ][
VRC,short
VRC,long ]
+ [
1/Cshort
1/Clong ]
I (1)
Vt=OCV(SoC)+ IRin+VRC,short+VRC,long (2)
whereEquation(1) is thestateequationandEquation(2) is theoutputequation,VRC,short andVRC,long
represent thevoltagesacross theshort-termandthe long-termRCnetworks, respectively,OCV(SoC) is
aneighth-orderpolynomialequationasa functionofSoC,Vt is thebattery terminalvoltageandthe
positivecurrent I representscharging.Rin represents the internalresistance;Rshort andRlongdenote the
diffusionresistances;andCshort andClong represent thediffusioncapacitances.Amongthem,Rin can
bedirectlyobtainedfromeachpulse-rest cycle throughEquation(3); thecorrespondingfourvariables
(V1,V2, I1 and I2)aremarkedinthebottomsubfigureofFigure1,andthevariationof identifiedRin
withSoC is showninFigure2.SoCcanbecalculatedthroughEquation(4), inwhichCapdenotes the
capacityof thebattery inAh.
Rin= V2−V1
I2− I1 (3)
SoC=SoC(0)+ 1
3600Cap ∫ t
0 I(τ)dτ (4)
6R&
Figure2.Rin variationwithdifferentstateofcharge (SoC).
For theCCoperatingscenario (I =0), theanalytical solutionsofEquation(1)arederivedas:
⎧⎨
⎩ VRC,short(t)=VRC,short(0)e − tτshort + IRshort(1−e− t
τshort)
VRC,long(t)=VRC,long(0)e − tτlong + IRlong(1−e − tτlong) (5)
162
Emerging Technologies for Electric and Hybrid Vehicles
- Titel
- Emerging Technologies for Electric and Hybrid Vehicles
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-191-7
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 376
- Schlagwörter
- electric vehicle, plug-in hybrid electric vehicle (PHEV), energy sources, energy management strategy, energy-storage system, charging technologies, control algorithms, battery, operating scenario, wireless power transfer (WPT)
- Kategorie
- Technik