Seite - 183 - in Emerging Technologies for Electric and Hybrid Vehicles
Bild der Seite - 183 -
Text der Seite - 183 -
Energies 2016,9, 270
3.ResearchMethod
3.1. FuzzyLogic
Fuzzy theory, proposedbyZadeh in1965, isused tomap linguistic terms tonumerical terms
withinhumandecisions. The fuzzy set is oftendefined to solve theuncertainty andvagueness in
criteriaweightingandalternativesratingsofmulti-criteriadecisionmakingproblems[39].Afuzzyset,
featuredbyamembershipfunction,assignseachcriterionamembershipratingamong(0,1), reflects
criteriagradesbelongingtoaset. Inaddition, linguistic termssuchas“good”,“fair”and“bad”are
put forwardtodefinenumerical intervals [40].
A triangular fuzzynumber ĂM, denotedby (a,b,c), is themostpopular fuzzynumber in fuzzy
applications [41]. Themembershipfunction isdefinedas follows:
μMpxq“ $’’’&’’’% x´a
b´a , aď xď b
c´x
c´b , bď xď c
0, otherwise (1)
and–8<aďxďb<8.
Inconcrete terms, themembership functionμMpxq“ 1 indicates thatvariablex fullybelongs to
the fuzzysetĂM. Conversely, if thevariablexdoesnotbelongto the fuzzysetĂM, thenμMpxq“0 [42].
LetĂM1 “pl1,m1,r1qandĂM2 “pl2,m2,r2qbetwotriangular fuzzynumbers, theoperation laws
areshownasbelow: ĂM1‘ĂM2 “pl1` l2,m1`m2,r1`r2q
(2)ĂM1dĂM2
«pl1l2,m1m2,r1r2q (3)
λĂM1 “pλl1,λm1,λr1q ,λą0
(4)ĂM1´1
«p1{l1,1{m1,1{r1q (5)
AndthedistanceofĂM1 “pl1,m1,r1qandĂM2 “pl2,m2,r2qcanbedefinedas follows[43]:
d ´ĂM1,ĂM2¯“ 12 ż 1
0 rl1`pm1´ l1qα`r1´pr1´m1qα´ l2´pm2´ l2qα´r2`pr2´m2qαsdα (6)
InmostMCDMprocesses,decisionmakersoftenprovideuncertainanswersrather thanprecise
values. Linguisticvaluesandfuzzysettheoryarerecommendedtoratepreferenceinsteadoftraditional
numericalmethod. Therefore, the fuzzyset theoryhasbeen integrated intovariousMCDMmethods,
suchas fuzzyAHP, fuzzyTOPSIS, fuzzyVIKOR,andsoon,whichshouldbemoreappropriateand
effective thanconventionalones inrealproblemsinvolvinguncertaintyandvagueness [44–46].
3.2. FuzzyDelphiMethod
TheDelphimethod (DM) is a techniqueused toobtain themost reliable consensus amonga
groupofexperts. ItwasproposedbyDalkyandHelmer in1963andhasbeenwidelyused indecision
andpredictionmaking. This techniqueoffersexpertsopportunities toreceive feedbackandmodify
previousopinions throughseveral roundsof consulting. Furthermore, owning to itsdeficiency in
handlingambiguityanduncertaintywithinexpertsurveys, fuzzyDelphimethod(FDM)wasproposed
tosolvethesedefectscombingDMwithfuzzylogic theory. Expertscanprovidetheiropinionsthrough
triangular fuzzynumbers (TFNs),andarenotrequiredtomodify themagainandagain.Moreover,
nouseful informationwouldbe lost,becauseallopinionscanbeeffectively taken intoaccountbythe
membershipdegrees.Dueto itsadvantages inevokinggroupdecisions,FDMisembracedinvarious
studies toconstructevaluation. Torecognize thevital criteria for theoptimalsitingofEVCS, theFDM
is introducedin thispaper. Essential stepsof theFDMare listedas follows:
183
Emerging Technologies for Electric and Hybrid Vehicles
- Titel
- Emerging Technologies for Electric and Hybrid Vehicles
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-191-7
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 376
- Schlagwörter
- electric vehicle, plug-in hybrid electric vehicle (PHEV), energy sources, energy management strategy, energy-storage system, charging technologies, control algorithms, battery, operating scenario, wireless power transfer (WPT)
- Kategorie
- Technik