Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Technik
Emerging Technologies for Electric and Hybrid Vehicles
Seite - 202 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 202 - in Emerging Technologies for Electric and Hybrid Vehicles

Bild der Seite - 202 -

Bild der Seite - 202 - in Emerging Technologies for Electric and Hybrid Vehicles

Text der Seite - 202 -

Energies 2016,9, 594 Thereareseveral typesofDSMapproachesdescribed in the literature. In thisarticle,weconsider two important classesof suchapproaches. Thefirst class, called control-basedDSM,makes control decisions forappliances for thenext timeperiodbasedonavailabledataat thegiven timesuchas consumption, flexibility, priorities, etc. The secondclass, calledplanning-basedDSM, plans control decisions fora longerperiod in the future (e.g.,onedayahead). Becausecontrol-basedDSMdoesnot planahead, it risksusingtheavailableflexibility tooearly, suchthatnoflexibility is leftwhenlateron, e.g., a largepeakoccurs. Planning-basedDSMdoes take this intoaccount,but requirespredictionsof futureproduction/consumption. Forexample, theplanning-basedDSMapproaches in [2,3] require suchpredictionsatahouse level. InSection2,wediscusscontrolandplanning-basedDSMinmore detail, andarguethatbothapproacheshaveseriousdisadvantages. InSection3,wedescribehowaHEMScanbeused to control the chargingof a single electric vehicle (EV)at thehouse level to followsomedesired loadprofile. In contrast to the relatedwork (e.g., [4]),nopredictionofa loadprofile is required.Weshowthatapredictionofasingleparameter characterizing theoptimalsolutionandapredictionof the loadfor theupcoming interval is sufficient tomakeanear-optimalplanningofanelectricvehicle.Weprovideananalysis thatstudieshowthe resultsofouronlineapproachapproximates theoptimalsolution,andgiveaboundonthemaximal relativedeviation. Thisboundshowsthat,underreasonablecircumstances, thecosts for theachieved solutionareonlya fewpercentmore thanthatof theoptimalsolution. Section4generalizes theseresults to thecaseofaneighborhoodwithmultipleEVs. Thepresented solution isapeak-shavingapproachthatkeeps theoverall loadof theneighborhoodbelowacertain level, andsimultaneouslykeeps the loadprofilesofeach individualhouseasflataspossible. Bythis, also the risk that thevoltageexceeds the legalbounds (e.g., 207V–253V inTheNetherlands [5]) is minimized, thecable loadiskept lowandtherebyunnecessary lossesareavoided.Note, thataDSM approachthatdoesnot take theseaspects intoaccountmaycausemoreproblemsthan it solves,aswas shownbyHoogsteenetal. [6]. SinceSections3and4dependonpredictionsofa fewcharacterizingvalues,westudyhowthese predictionsareobtained. Section5usesmeasureddataanddiscusseshowtherequiredpredictionsof thecharacteristicscanbeeasilyobtained. ThepotentialofourapproachisevaluatedinSection6andcomparedtothestate-of-the-artresearch. We show that the fewparametersweneed canbepredicted accurately andare sufficient for near optimaloperationofagroupofhouses. Section7concludes thisarticle. Summarizing, thecontributionof thisarticle isademandsidemanagementmethodologywith the followingproperties: • Itonlyusesapredictionofasingleparameterthatcharacterizestheoptimalsolution, togetherwith apowerpredictionof thehouse for theupcoming interval toplan the chargingof an electric vehicle inahouse. • Apeakatthetransformercanbecounteractedwithlowcommunicationoverheadusingadecision makingprocess thatalsorequirespredictionsofcharacteristics thataidatmakingtrade-offsat the neighborhoodlevel. • Apredictionschemefor therequiredparameters, combinedwithasensitivitystudythatshows that theresultsdonotsuffermuchfrompredictionerrors. 2.RelatedWork There are several classes of DSM approaches in the literature. In Section 2.1, we discuss control-basedDSMapproaches, and in Section 2.2 planning-basedDSMapproaches. Asweuse electricvehiclesasaproofofconcept,wetreatDSMapplied foragroupofelectricvehicles specifically inSection2.3. 202
zurück zum  Buch Emerging Technologies for Electric and Hybrid Vehicles"
Emerging Technologies for Electric and Hybrid Vehicles
Titel
Emerging Technologies for Electric and Hybrid Vehicles
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03897-191-7
Abmessungen
17.0 x 24.4 cm
Seiten
376
Schlagwörter
electric vehicle, plug-in hybrid electric vehicle (PHEV), energy sources, energy management strategy, energy-storage system, charging technologies, control algorithms, battery, operating scenario, wireless power transfer (WPT)
Kategorie
Technik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Emerging Technologies for Electric and Hybrid Vehicles