Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Technik
Emerging Technologies for Electric and Hybrid Vehicles
Seite - 206 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 206 - in Emerging Technologies for Electric and Hybrid Vehicles

Bild der Seite - 206 -

Bild der Seite - 206 - in Emerging Technologies for Electric and Hybrid Vehicles

Text der Seite - 206 -

Energies 2016,9, 594 integer restrictions for thevaluesof x andhasanasymptotic timecomplexityofO(M). However, thisalgorithmhasa largeconstantsince it reliesonmedianfinding[20]. Therefore, thealgorithmis in practiceonly fast forarelatively largeM. 3.2.OnlineOptimization When the power consumption in future intervals is knownbeforehand, the aforementioned algorithmscanbeused tocalculate theoptimal chargingpower foreach future interval. However, inmostcases, these futurevaluesarenotknownandmustbepredicted.Obviously,predictionerrors mayleadtonon-optimaldecisions,andthe impactof sucherrorsatahouse level is rarelyconsidered in the literature. Furthermore, it is ingeneraldifficult topredict thepowerconsumptionforall future charging intervalsat thebeginningof theplanning. Therefore,wetakeadifferentapproachthatdoes notneedthisdetailed information. Central inourapproach is theobservation that for theaforementionedalgorithms,asinglevalue Zuniquelycharacterizes theoptimalsolution. Forall feasible instancesofProblem1, thereexistsaZ suchthat theoptimalsolutionx1, . . . ,xM canbeconstructedbysetting xm :=max(0,min(Z−pm+qm, x¯)) . (5) Note that this calculation, for time intervalm, canbedelayeduntil thebeginningof the time interval, and, thuswecandelay thepredictionof pm to this time. The sketched approach is in principle interval based; however, it can easily be adapted to aneventbasedapproachthat recalculates thechargingpowerwhenever thepowerconsumptionof thehouseholdchangesandall results in this sectionarealsovalid for theeventbasedapproach. Asaconsequenceof theabove, themainchallengeofourapproach is thatwedonotknowZ and, therefore, thisvaluemustbepredicted.However, comparedtoapproaches thatpredictspower foreach interval, thisapproachhas twoadvantages,namely, thatonlyasinglevalueZ ispredicted (insteadof thecompletevector p), andthat theresultingerrorduetoanincorrectpredictioncanbe boundedaswediscuss in thenextsection. 3.3. Predictions Aswe, ingeneral,donotknowZ,weuseapredictionofZ,whichwedenoteby Zˆ.When Zˆ<Z, Equation(5)chooseschargingpowers thatarenotsufficient tocharge thecarupto thedesired level. This canberesolvedbychargingat themaximumpower x¯ (or someotherpre-set chargingpower) startingfromthe intervalwhere thisbecomes theminimumchargingpower that isneededtocharge theEVwithin the remaining intervals. Note that thismayresult in largepeaksandhighcosts (i.e., highobjectivevalues)at theendof thechargingperiod,aswediscuss lateron.Onthecontrary, in the situationwhere Zˆ>Z, thealgorithmcharges faster thanrequiredresulting insometimeintervalsat theendof theplanningperiodwith loworzerochargingpowervalues. Algorithm1takes these twocases intoaccountandguarantees that theSoCtarget is reachedin bothsituations. Note thatAlgorithm1produces thesame(optimal) solutionasEquation (5)when Zˆ=Z. Before thefirst invocationof thealgorithm, thevariableT,whichexpresses theamountof energyalreadycharged, is initializedtozero. Then, iterativelybeforeeach intervalm, thisalgorithmis usedtocalculate thechargingpowerxm for this interval.Hence,at thebeginningof them-th interval, T=∑mi=1xm expresses theamountalreadychargedupto this intervalof the totalC tobecharged. Figure2 illustratesan instancewith Zˆ=1.1Zand q= 0,whichshowsthat thepredictionerror is spreadoutevenlyoverall intervalswherechargingtakesplace,but thechargingstopsbefore the deadline. Theratiobetweentheobjectivevalueof theoptimalsolutionandof theonlinealgorithm using Zˆ is1.008 in thisexample.Onthewebsite [21], an interactivedemonstrationofAlgorithm1can befound. 206
zurück zum  Buch Emerging Technologies for Electric and Hybrid Vehicles"
Emerging Technologies for Electric and Hybrid Vehicles
Titel
Emerging Technologies for Electric and Hybrid Vehicles
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03897-191-7
Abmessungen
17.0 x 24.4 cm
Seiten
376
Schlagwörter
electric vehicle, plug-in hybrid electric vehicle (PHEV), energy sources, energy management strategy, energy-storage system, charging technologies, control algorithms, battery, operating scenario, wireless power transfer (WPT)
Kategorie
Technik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Emerging Technologies for Electric and Hybrid Vehicles