Seite - 282 - in Emerging Technologies for Electric and Hybrid Vehicles
Bild der Seite - 282 -
Text der Seite - 282 -
energies
Article
OptimizationofKeyParametersofEnergy
ManagementStrategyforHybridElectricVehicle
UsingDIRECTAlgorithm
JingxianHao1,2,ZhuopingYu1,ZhiguoZhao1,*,PeihongShen1 andXiaowenZhan1
1 SchoolofAutomotiveStudies,TongjiUniversity,Shanghai201804,China;haojingxian@saicmotor.com(J.H.);
yuzhuoping@tongji.edu.cn(Z.Y.); shenpeihong@tongji.edu.cn(P.S.); xiaowenzhan1@163.com(X.Z.)
2 SAICMotorCommercialVehicleTechnicalCenter,Shanghai200438,China
* Correspondence: zhiguozhao@tongji.edu.cn;Tel.:+86-21-6958-9117
AcademicEditors:MichaelGerardPechtandChunhuaLiu
Received: 22August2016;Accepted: 22November2016;Published: 26November2016
Abstract: The rule-based logic threshold control strategy has been frequently used in energy
management strategies forhybrid electric vehicles (HEVs) owing to its convenience in adjusting
parameters, real-timeperformance, stability,androbustness.However, the logic thresholdcontrol
parameters cannot usually ensure the best vehicle performance at different driving cycles and
conditions. For this reason, theoptimizationof keyparameters is important to improve the fuel
economy,dynamicperformance, anddrivability. Inprinciple, this is amultiparameternonlinear
optimizationproblem.The logic thresholdenergymanagementstrategyforanall-wheel-driveHEV
iscomprehensivelyanalyzedanddeveloped in this study. Sevenkeyparameters tobeoptimized
are extracted. The optimizationmodel of key parameters is proposed from the perspective of
fuel economy. The global optimizationmethod, DIRECT algorithm, which has good real-time
performance, lowcomputationalburden, rapidconvergence, is selected tooptimize theextracted
keyparametersglobally. Theresults showthatwith theoptimizedparameters, theengineoperates
moreat thehighefficiencyrangeresulting intoa fuel savingsof7%comparedwithnon-optimized
parameters. Theproposedmethodcanprovideguidance forcalibrating theparametersof thevehicle
energymanagementstrategyfromtheperspectiveof fueleconomy.
Keywords: fueleconomy;hybridelectricvehicle;energymanagementstrategy; logic thresholdvalue;
DIRECT;parametersoptimization
1. Introduction
Themainfactorsaffectingthe fuelconsumptionandemissionperformanceofahybridelectric
vehicle (HEV) include theperformanceparametersofvariouspowertraincomponentsandvehicle
control strategyparameters.Optimizingtheparametersof thepowertrainandcontrol strategywill
notonlyresult inareasonablematchfor thepowertrain,butalsoreduce thevehicle fuel consumption
andemissions.
Atthisstage, theenergymanagementstrategybasedonlogic threshold ismainlyusedinHEVs[1,2].
The focus is topredetermineanumberof thresholdparameters thatmaketheengineandbatterywork
in thehighefficiencyarea. Thebattery charginganddischargingefficiencyare also considered in
order toproperlydistribute thedriver’s requiredtorqueto theengineandmotor, therebyattaininga
goodvehicle fueleconomyandemissionperformance.
Invehicle tests, thepredefinedparametervaluesof the logic thresholdcontrolstrategyareusually
obtained by trial and error based on engineering experience. Thismethod requires considerable
debugging time to acquire satisfactory results both in simulationandvehicle transfer hub test for
Energies 2016,9, 997;doi:10.3390/en9120997 www.mdpi.com/journal/energies282
Emerging Technologies for Electric and Hybrid Vehicles
- Titel
- Emerging Technologies for Electric and Hybrid Vehicles
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-191-7
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 376
- Schlagwörter
- electric vehicle, plug-in hybrid electric vehicle (PHEV), energy sources, energy management strategy, energy-storage system, charging technologies, control algorithms, battery, operating scenario, wireless power transfer (WPT)
- Kategorie
- Technik