Web-Books
im Austria-Forum
Austria-Forum
Web-Books
Technik
Emerging Technologies for Electric and Hybrid Vehicles
Seite - 299 -
  • Benutzer
  • Version
    • Vollversion
    • Textversion
  • Sprache
    • Deutsch
    • English - Englisch

Seite - 299 - in Emerging Technologies for Electric and Hybrid Vehicles

Bild der Seite - 299 -

Bild der Seite - 299 - in Emerging Technologies for Electric and Hybrid Vehicles

Text der Seite - 299 -

Energies 2016,9, 997 Figure17.Thepotentialoptimalhyper-rectangleofeach iteration. Formultidimensional spaceoptimizationproblems, theDIRECTalgorithmtakessimilarsteps to select thebestpotentialoptimalhyper-rectangle. 5.2.OptimizationofKeyParameters forLogicThresholdEnergyManagementStrategyUsingDIRECT AlgorithmBasedonFuelEconomy Basedonthediscussions in the thirdsection, thekeyparametersof the logic thresholdenergy managementstrategyfor theHEVarepresented inTable3. In this research, thepurposeof theenergy management strategy is toachieve thebest fuel economyforagivendrivingcycle. Therefore, the target function is FC=minf(x), (16) where f(x) is theequivalentfuelconsumptionper100km,whichincludestheenginefuelconsumption andequivalent fuel consumptionof theelectricenergyfromthepowerbattery. Theunit isL/100km. Thecalculationfor f(x) is shownasbelow. f(x)=100 ∫ k1UIdt q ρ ∫ vdt +100 ∫ k2 fr(Te,ωe)Teωe9550dt ρ ∫ vdt ne (17) whereρ is thegasolinedensity ing/L; fr(Te,ωe) is thecurrentenginefuelconsumptionrate,which isa lookupfunctionof theengine torqueandspeed,with theunitg/kWh;Te andωe are thecurrent enginetorqueandspeed,withtheunitsN ·mandrpm,respectively;k1 andk2 are thegasoline–electric conversionconstantcoefficients;Uand I are thepresentbatteryvoltageandcurrent,with theunitsV andA,respectively;q refers to thegasolinecalorificvalue in J/kg;v is thecurrentspeedinkm/h. Theengine torqueandspeed,batteryvoltageandcurrent,andaveragespeedarerelatedto the sevenparameters tobeoptimizedasshowninTable3. Therefore, the optimization of key parameters for theHEV energymanagement strategy is convertedto theoptimizationofsevendimensionalparameters. TheDIRECTalgorithmisselected tosolve thisproblem.Theprocess isshowninFigure18. First,wenormalizedn-dimensionalspace into n-dimensional unit hyper-cube and calculate the equivalent fuel consumptionper 100 kmat thecenterpointas the initialminimumfuel consumption. Thehyper-cube is thepotentialoptimal hyper-rectanglewheniterationstarts. Then,wechooseapotentialoptimalhyper-rectangleanddivide it.Afterwards,wecalculate theequivalent fuelconsumptionper100kmat thecenterpointofeach rectangle. After that,we compare itwith theminimal value collected in the last iteration. If this value is smaller thanthepreviousminimumfuel consumption,weupdateandstore theminimum fuelconsumption. Inaddition,weupdate thepotentialoptimalhyper-rectangle. Theoptimizationof DIRECTalgorithmwill stopuntil thedefinedmaximumnumberof iterationsor thepotentialoptimal hyper-rectangle isempty. 299
zurück zum  Buch Emerging Technologies for Electric and Hybrid Vehicles"
Emerging Technologies for Electric and Hybrid Vehicles
Titel
Emerging Technologies for Electric and Hybrid Vehicles
Herausgeber
MDPI
Ort
Basel
Datum
2017
Sprache
englisch
Lizenz
CC BY-NC-ND 4.0
ISBN
978-3-03897-191-7
Abmessungen
17.0 x 24.4 cm
Seiten
376
Schlagwörter
electric vehicle, plug-in hybrid electric vehicle (PHEV), energy sources, energy management strategy, energy-storage system, charging technologies, control algorithms, battery, operating scenario, wireless power transfer (WPT)
Kategorie
Technik
Web-Books
Bibliothek
Datenschutz
Impressum
Austria-Forum
Austria-Forum
Web-Books
Emerging Technologies for Electric and Hybrid Vehicles