Seite - 299 - in Emerging Technologies for Electric and Hybrid Vehicles
Bild der Seite - 299 -
Text der Seite - 299 -
Energies 2016,9, 997
Figure17.Thepotentialoptimalhyper-rectangleofeach iteration.
Formultidimensional spaceoptimizationproblems, theDIRECTalgorithmtakessimilarsteps to
select thebestpotentialoptimalhyper-rectangle.
5.2.OptimizationofKeyParameters forLogicThresholdEnergyManagementStrategyUsingDIRECT
AlgorithmBasedonFuelEconomy
Basedonthediscussions in the thirdsection, thekeyparametersof the logic thresholdenergy
managementstrategyfor theHEVarepresented inTable3. In this research, thepurposeof theenergy
management strategy is toachieve thebest fuel economyforagivendrivingcycle. Therefore, the
target function is
FC=minf(x), (16)
where f(x) is theequivalentfuelconsumptionper100km,whichincludestheenginefuelconsumption
andequivalent fuel consumptionof theelectricenergyfromthepowerbattery. Theunit isL/100km.
Thecalculationfor f(x) is shownasbelow.
f(x)=100 ∫
k1UIdt
q
ρ ∫
vdt +100 ∫
k2 fr(Te,ωe)Teωe9550dt
ρ ∫
vdt ne (17)
whereρ is thegasolinedensity ing/L; fr(Te,ωe) is thecurrentenginefuelconsumptionrate,which
isa lookupfunctionof theengine torqueandspeed,with theunitg/kWh;Te andωe are thecurrent
enginetorqueandspeed,withtheunitsN ·mandrpm,respectively;k1 andk2 are thegasoline–electric
conversionconstantcoefficients;Uand I are thepresentbatteryvoltageandcurrent,with theunitsV
andA,respectively;q refers to thegasolinecalorificvalue in J/kg;v is thecurrentspeedinkm/h.
Theengine torqueandspeed,batteryvoltageandcurrent,andaveragespeedarerelatedto the
sevenparameters tobeoptimizedasshowninTable3.
Therefore, the optimization of key parameters for theHEV energymanagement strategy is
convertedto theoptimizationofsevendimensionalparameters. TheDIRECTalgorithmisselected
tosolve thisproblem.Theprocess isshowninFigure18. First,wenormalizedn-dimensionalspace
into n-dimensional unit hyper-cube and calculate the equivalent fuel consumptionper 100 kmat
thecenterpointas the initialminimumfuel consumption. Thehyper-cube is thepotentialoptimal
hyper-rectanglewheniterationstarts. Then,wechooseapotentialoptimalhyper-rectangleanddivide
it.Afterwards,wecalculate theequivalent fuelconsumptionper100kmat thecenterpointofeach
rectangle. After that,we compare itwith theminimal value collected in the last iteration. If this
value is smaller thanthepreviousminimumfuel consumption,weupdateandstore theminimum
fuelconsumption. Inaddition,weupdate thepotentialoptimalhyper-rectangle. Theoptimizationof
DIRECTalgorithmwill stopuntil thedefinedmaximumnumberof iterationsor thepotentialoptimal
hyper-rectangle isempty.
299
Emerging Technologies for Electric and Hybrid Vehicles
- Titel
- Emerging Technologies for Electric and Hybrid Vehicles
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-191-7
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 376
- Schlagwörter
- electric vehicle, plug-in hybrid electric vehicle (PHEV), energy sources, energy management strategy, energy-storage system, charging technologies, control algorithms, battery, operating scenario, wireless power transfer (WPT)
- Kategorie
- Technik