Seite - 300 - in Emerging Technologies for Electric and Hybrid Vehicles
Bild der Seite - 300 -
Text der Seite - 300 -
Energies 2016,9, 997
minf
0t
=
minf
f< Yes
No
1t
t= +
maxt
t= Yes
S φ=
No
S
S
Yes
No
End
Figure 18. Optimization procedure of key parameters for HEV energy management using
DIRECTalgorithm.
5.3.OptimizationResult andAnalysis
Figure19showstheoptimizationmodel for theHEVenergymanagementkeyparameters,which
includes thepreviouslyestablishedHEVclosed-loopsimulationmodel, target tominimize the fuel
consumptionper100km,andcodeof theDIRECTalgorithm.Theoptimizationmodel isestablished
inMATLAB/Simulink. Besides, theconstraintofvehicle’sdynamicperformanceshouldalsobe taken
intoaccount. The0to60 timefor theall-wheeldrive full-HEVstudiedshouldnotbemore than10s.
ThedrivingcycleofNEDCisselected,andthe initialSOC is set to55%. Thekeyparametersof the
DIRECTalgorithmaresetasshowninTable11.
300
Emerging Technologies for Electric and Hybrid Vehicles
- Titel
- Emerging Technologies for Electric and Hybrid Vehicles
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-191-7
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 376
- Schlagwörter
- electric vehicle, plug-in hybrid electric vehicle (PHEV), energy sources, energy management strategy, energy-storage system, charging technologies, control algorithms, battery, operating scenario, wireless power transfer (WPT)
- Kategorie
- Technik