Seite - 311 - in Emerging Technologies for Electric and Hybrid Vehicles
Bild der Seite - 311 -
Text der Seite - 311 -
Energies 2016,9, 10
L1 =L4 =42.538μH.Because themagneticcoilsof theLCL-LCLtopologyare thesameas thoseof the
LC-LCseries topology, theelectricparametersof theLC-LCseries topologyandLCL-LCLtopology
canbesummarizedasshowninTable1.
Table1.Detailedparametersof theLC-LCseries topologyandLCL-LCLtopology.
LC-LCSeriesTopology LCL-LCLTopology
Electricparameters Value Electricparameters Value
Primary inductorLS 290.18μH Compensating inductorL1 43.2μH
Parasitic resistanceRS 193mΩ Parasitic resistanceR1 53mΩ
PrimarycapacitorCS 34.83nF PrimaryresonantcapacitorCS 234.75nF
Secondary inductorLD 329.4μH Primary inductorLS 290.18μH
Parasitic resistanceRD 213mΩ Parasitic resistanceRS 193mΩ
SecondarycapacitorCD 30.89nF CompensatingcapacitorCS1 40.68nF
Secondary inductorLD 329.4μH
Parasitic resistanceRD 213mΩ
CompensatingcapacitorCD1 35.07nF
Compensating inductorL4 42.5μH
Parasitic resistanceR4 42.5mΩ
SecondaryresonantcapacitorCD 238.63nF
The detailed efficiency expressions of LC-LC topology andLCL-LCL topology are given by
references[27,30–32],andcanbealsodeducedusingMaple. Thenwesubstitute thedataofTable1 into
thepowerandefficiencyexpressionsof theLC-LCseriesandLCL-LCLtopologies,andtheir resulting
transfercharacteristicsareasshowninFigure3.
Figure3ashowsthatthechargingpowerofthesetwotopologiesarethesame,despitethedifferent
batteryvoltages,andFigure3bshowsthat theefficiencyof theLC-LCseries topology ishigher than
thatof theLCL-LCLtopology.Notethat thetheoretical results ignorethelossescausedbytheHBridge
andrectifier, so theefficiency lossesaremainlydueto theparasitic resistancesof the inductorsand
capacitors. Theparasitic resistancesofcompensatingcapacitorsareusually ignored, for theyare far
smaller thanthoseofmagneticcoils. ComparedwiththeLC-LCseries topology, theLCL-LCLtopology
hasanother twocompensating inductors, theparasitic resistancesofwhich furthercauseadrop in the
transferefficiency. Inorder toverify thecorrectnessof theoretical calculations, theexperimentsare
performed,andtheresultsareshowninFigure4.
(a)
40 80 120 160 200
0
200
400
600
800
1000 PLC-LC (VB=100V)
PLCL-LCL (VB=100V)
PLC-LC (VB=75V)
PLCL-LCL (VB=75V)
PLC-LC (VB=50V)
PLCL-LCL (VB=50V)
Input Voltage VS(V) ȱ
(b)
40 80 120 160 200
0.93
0.94
0.95
0.96
0.97
0.98
0.99
Ș LC-LC (VB=100V)
Ș LCL-LCL (VB=100V)
Ș LC-LC (VB=75V)
Ș LCL-LCL (VB=75V)
Ș LC-LC (VB=50V)
Ș LCL-LCL (VB=50V)
Input Voltage VS (V)
Figure3.Theoretical transferpower (a) andefficiencies (b)of theLC-LCseriesandLCL-LCLtopologies.
311
Emerging Technologies for Electric and Hybrid Vehicles
- Titel
- Emerging Technologies for Electric and Hybrid Vehicles
- Herausgeber
- MDPI
- Ort
- Basel
- Datum
- 2017
- Sprache
- englisch
- Lizenz
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-191-7
- Abmessungen
- 17.0 x 24.4 cm
- Seiten
- 376
- Schlagwörter
- electric vehicle, plug-in hybrid electric vehicle (PHEV), energy sources, energy management strategy, energy-storage system, charging technologies, control algorithms, battery, operating scenario, wireless power transfer (WPT)
- Kategorie
- Technik