Page - 6 - in 3D Printing of Metals
Image of the Page - 6 -
Text of the Page - 6 -
Metals 2017,7, 2
high-intensity laser, the powderparticles are heated at a faster rate as the energy is absorbedvia
bothbulk-couplingandpowder-couplingmechanisms [36]. Theenergy is converted intoheatand
eventually thepowderparticlesmelt, coalesce,andformanagitatedmeltpool forsomemilliseconds
(typically0.5 to25ms). Themoltenpool formed,acquires theshapeofacircularorsegmental cylinder
under theeffectof surface tension[37]. Extremelyshort interactiontimebetweenthe laserbeamand
thepowderbedresults in the formationofa transient temperaturefieldwithahightemperatureup
to105 ◦Candasignificantrapidquenchingeffectwithveryhighcoolingratesupto106–8 ◦C/s[38].
Rapidsolidificationmaycausedevelopmentofnon-equilibriummetallurgicalphenomenasuchas
microstructuralrefinement,solidsolutionhardeningandtheformationofmetastablephases,whichcan
haveasubstantial effect in improvingtheresultantmechanicalpropertiesandcorrosionresistanceof
the laserprocessedmaterials [39,40].
LiteraturehasshownthatcomponentsproducedbySLMarecompletelydenseandhomogeneous
withoutmicroscopic pores or voids and do not require any post-processing (such as infiltration
withothermaterialsorheat treatment)usuallyneededto improvetheSLS(SelectiveLaserSintered)
components,other thantheremovalofpartsandsupports fromthesubstrateplate.Anothermajor
advantageof SLMlies in its high feasibility inprocessingnon-ferrouspuremetals likeTi,Al, Cu,
Mg,etc.,whichtodatecannotbewellprocessedusingSLS[39]. Somecommonmaterialsthathavebeen
investigatedforSLMinclude: ferrousalloys, titanium,cobalt-chrome,nickel, aluminium,magnesium,
copper, zinc, tungsten, andgold [41]. SLMalsohas thepotential to produce components of very
complexgeometrieswithagradientporositywhich in turnallowsthechoiceofpropertydistribution
toachieverequiredfunctions [42]. SLMisunique in that it canbeusedfor theadditivemanufacturing
(AM)of functionallygradedandpure-metalparts,aswellas for lasercladding/repair.Additiverepair
ofdamagedturbineenginehot-sectioncomponents [43,44]madefromnickelbasesuperalloys isone
example of such repairs. SLM is also capable ofmulti-material processing, i.e., utilizingdifferent
feedstockmaterials simultaneously to produce various alloys and functionally gradedmaterials
(FGMs) [45,46].
Themaingoal inSLMis toproducemetallicpartswith100%density.Obtainingthisobjective is
noteasybecause there isnomechanicalpressureduringSLM,andfluiddynamics inSLMismainly
drivenbygravityandcapillary forces alongwith thermal effects. Also, theabsenceofmechanical
pressureduringtheprocessingmayleadtoreducedsolubilityofsomeelements in themeltduring
solidificationcausingdiscontinuousmeltingofthetracksandformationofporesresultinginanuneven
surface [47,48]asshowninFigure1a,wheredistributionofporosityandunmeltedareawithinZK60
sample produced by SLM is revealed. Thematerials also experience varying degrees of thermal
fluctuationduring the SLMprocesswhichmay induce residual stresses in the lasermelted layer
undergoingrapidsolidification[41]. Thiscanleadtoformationofhotcracksanddelaminationofparts
asshowninFigure1b.Highheating/coolingratesduringSLMcanalsoleadtotheformationofnarrow
heataffectedzone(HAZ)aroundthemeltpool. PresenceofHAZcanalter thecompositionand/or
microstructureofmaterial influencingthequalityandpropertiesof theSLM-processedsample [28].
The transient thermalbehaviourduring theSLMprocesscanbecontrolledconsiderablybyprocessing
parameters, suchas laserpower, scan speed, hatch spacing, layer thickness, andscanningpattern.
Figure2providesan illustrationof theseprocessparameterscommonlystudied inSLM.Theseprocess
parameters are adjusted such that a singlemelt vector can fuse completelywith theneighbouring
meltvectorsandthepreceding layer.Applicationof inappropriateprocessingconditionscan leadto
variousundesirableeffectssuchas irregularities inthesurfacemorphology, thermalcracks,andballing
effects. Therefore, it is important toestablish therelationshipsbetweentheprincipalSLMparameters
andsurfacemorphologyandtooptimize theSLMprocessingparameters toproducemetallicparts
with100%densitywithoutcracksandfusiondefects.
6
back to the
book 3D Printing of Metals"
3D Printing of Metals
- Title
- 3D Printing of Metals
- Author
- Manoj Gupta
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-592-2
- Size
- 17.0 x 24.4 cm
- Pages
- 170
- Keywords
- 3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
- Categories
- Naturwissenschaften Chemie