Page - 8 - in 3D Printing of Metals
Image of the Page - 8 -
Text of the Page - 8 -
Metals 2017,7, 2
Table1.Variables influencingtheprocessinganddensificationmechanismofselective lasermelting
(SLM)processedparts [54].
SLMProcessingParameters MaterialProperties
Laser type Viscosity
Laserpower Surface tension
Mechanical layeringofpowder Thermalconductivity
Atmosphericcontrol Specificheat
Gasflow Absorptivity/reflectivity
Heaters (bedtemperature) Emissivity
Scanradius Particlesizedistribution
Scanvector length Particleshape
Scanspacing MeltingTemperature
Scanrates BoilingTemperature
Scanningtimeinterval Chemical composition
Thicknessof layers Oxidationtendency
3.1. SLMProcessingWindowsofMagnesiumandMagnesiumAlloyPowders
Fromtheirpreliminaryexperiments,Ngetal. [55]wereable tosuccessfullyachieve fullmelting
of single magnesium tracks using a miniature SLM system in an inert argon gas atmosphere
and demonstrated the potential to employ magnesium powders in the fabrication of objects
using SLM. Further, the interactions between laser sources andmagnesiumpowder tracks under
different processing conditions, including laser powers, scanning speeds, and irradiationmodes
(i.e., continuous wave and pulsed mode) were investigated and the processing window for the
single track formationwasestablished[56,57].Also, severalother investigations [58–65]have focused
ondevelopingprocessingwindowsbasedon the formabilityofmagnesiumandmagnesiumalloy
powders such asMg-9%Al, AZ91D, ZK60 andWE43 for fabricating single layer andmulti-layer
threedimensionalparts. Thedetailsof theparametersused in these studies canbeseen inTable2.
Figure3presentsanexampleofaprocessmapdevelopedforSLMMg-9%Alpowders inwhichseveral
distinctzonesareobserved.
Figure3.ProcessmapforMg-9%Al, resultsas functionof therangeof laserpowersandscanspeeds
(modifiedfromreference [60]).
During theprocessofSLM, themeltingof thepowder layer stronglydependson the inputof
laserenergysuppliedto thematerial. In thisarticle, inorder tohaveasingleparameter tocompare
the processing conditions for single layer andmultiple layer parts, specific laser energy density,
E, isdefinedas:
E= Laserpower (P)
Scanningvelocity (v)×Hatchspacing (s) (1)
E= Laserpower (P)
Scanningvelocity (v)×Hatchspacing (s)×Layer thickness (t) (2)
8
back to the
book 3D Printing of Metals"
3D Printing of Metals
- Title
- 3D Printing of Metals
- Author
- Manoj Gupta
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-592-2
- Size
- 17.0 x 24.4 cm
- Pages
- 170
- Keywords
- 3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
- Categories
- Naturwissenschaften Chemie