Page - 10 - in 3D Printing of Metals
Image of the Page - 10 -
Text of the Page - 10 -
Metals 2017,7, 2
Theaboveequations ((1)and(2))present theenergydensity that isavailable toheatupandmelt
thepowders for fabricatingsingle (J/mm2)andmultiple layers (J/mm3), respectively. Theoccurrence
ofvariousregions in theprocessingwindowaswellas theresultingmicrostructure isdependenton
the laserenergydensity, rather than laserpowerorscanningrate in isolation. Basedonthe formation
qualityof thespecimensduringtheSLMprocess, fourregionsofbehaviourcouldbedefinedover the
consideredrangeof the laserpowerandthescanningspeedfordifferentmagnesiumandmagnesium
alloypowders:
I Highenergy inputzone: In this zone the input energydensity is toohighunder ahigh laser
power forall speedsused.Asaresult,hightemperatureswitnessed in themoltenpoolscauses
evaporationandionisationof thepowdersdueto the lowboilingpointofmagnesium(1093 ◦C).
Theevaporatedpowdersexpandrapidly inducingastrongrecoil effectonthemoltenpooland
blowingtheliquidandpowderawayresultinginnotrackformation.Vaporizationofmagnesium
powdersoftenresults incondensationofvolatilizedmaterialsonthe laserwindow,disrupting
thedeliveryof the laserpower[50].Moreover,effectivetemperature inthemeltpool increasedby
thehigh-energyinputaffects thedynamicviscosityof theoverheatedliquidmagnesiumresulting
in the instabilityof themeltpool.Moltenmagnesiumpossessesamuchlowerdynamicviscosity
(1.5Pa-s) thaniron(6.93Pa-s)andtitanium(2.2Pa-s)alloyswhicharewellestablishedintheSLM
process. Thehighenergy inputduring laserprocessing induceshighthermalstresses resulting in
reducedviscosityof themeltpoolwhichmayleadtodeformationofparts [64].
II Lowenergy inputzone: Thepresenceof thiszone is influencedbythe lowestenergydensity for
all thescanningspeedsusedcombinedwithrelatively lowlaserpower.Usinga lowlaserpower
anda relatively high scanning speedmaynot allow themelting temperature ofmagnesium
(650 ◦C)tobereachedwhichresults inpartialmeltingof thepowders. The laserenergydensity
is insufficient togenerate adequate liquidphaseandconsequently leads toapoorbondneck
between the particulates. Even though therewas some fusion between theparticles, fragile
sampleswithoutmechanical strengthareobtainedandnumerousunmoltenmetal fragments
existedon thesurface. Samples fabricatedusing the laserparameters in thiszonehavemany
defectssuchasdelamination,brittle fractureandhighporosity [67]. Furthermore,aprominent
heat-affectedzone(HAZ)canbedevelopedduringthemeltingofthetracks.HAZisdevelopedas
aresultofpartialmeltingofparticlesdue toradialheatconduction fromthecentreof themolten
pool to theneighbouringpowders [8]. If thescanningspeedwas toofast,morepowders,due to
the lowdensityandchemicalactivityofmagnesium,wereblownupandthenoxidizedto form
ablack fogMgOcontaminating theprotect-gaschamber [59]. It canbeobservedfromTable3
that thereexistsaminimumcritical laserenergydensityabovewhich theSLMofmagnesium
powdersoccurred.
III Formationzone: In this zone, acceptable melting of magnesium powders can be achieved
in a relatively stablemelt poolwhichyields trackswith goodmetallurgical bonding.As the
formationofa fullymoltenpowderbed isessential inSLMprocessing tosuccessfullybuildnear
full-densityparts, sufficient laserenergydensity isapplied topowdermaterials. Fairlydense
structures (i.e., 75%–99.5%)without obviousmacro-defects canbebuilt in aproper range of
energydensitieswhicharederivable fromtherangesof laserpowerandscanratesasshownin
Table3 fordifferentmagnesiumalloypowders. It isbelievedthat therangeofenergydensities in
the formationzone increase thepowderbedtemperature,while reducingtheviscosityof theof
themeltpool suchthat themelt canbespreadproperlyonthe formerlyprocessedpowder layer,
therebyfacilitatingmoreefficientdensificationwithsolidpowderedparticlesaselucidatedby
Attaretal. inSLMprocessingofcommerciallypureTi [68]andTi-TiB2 composites [69].
IV Ballingregion:Occurrenceof“balling”region ischaracterisedbytheagglomerationofaseries
ofball likeparticles to formlargesizemeltpoolsdueto insufficient input laserenergydensity
causedbyacombinationof lowlaserpower,highscanningspeed,andlarge layer thickness [41].
Ballingeffect is causeddueto lackofwettingof themoltenpoolwith thepreceding layerwhich
10
back to the
book 3D Printing of Metals"
3D Printing of Metals
- Title
- 3D Printing of Metals
- Author
- Manoj Gupta
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-592-2
- Size
- 17.0 x 24.4 cm
- Pages
- 170
- Keywords
- 3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
- Categories
- Naturwissenschaften Chemie