Page - 13 - in 3D Printing of Metals
Image of the Page - 13 -
Text of the Page - 13 -
Metals 2017,7, 2
than500mm/s,powderparticleswerenotmeltedcompletelyandcausedvoidsbetweentheunmelted
powders, resulting inasharpdropin therelativedensityof thesample to82.25%.
Table4.RelativedensitiesofAZ91parts formedwithvaryingscanningspeedandhatchspacingsat
laserpower=200W.
ScanningSpeed(mm/s) RelativeDensity (%)atDifferentHatchSpacings
70μm 90μm 110μm 130μm
333 99.4 99.5 99.2 98.8
500 99.2 99.3 99 98.4
667 99.1 98.8 93.5 89.1
833 97.4 95.9 84.4 77.2
1000 91.8 89 76.5 73.4
Figure4.X-raydiffraction(XRD)patternsof theSLMedAZ91Dsamples fabricatedatdifferent laser
energydensities indicatingabsenceofanysurfaceoxidefilms[61].
Layer thickness isanother importantparameter thathasasignificant impactontheporosityand
layerbondinginthefabricatedpartsaffectingthetensilestrength,hardnessanddimensionalaccuracies
in thedirectionof thebuild [83]. For instance,ahigherpowder layer thicknesswill result in less fusion
betweentheparticlesbecause thesameamountofenergyhas toberadiatedtoagreateramountof
materialascomparedtoa lower layer thickness.Consequently, lessdensepartswithmoreporesand
voidswillbe formedas the laserenergydensitypenetrating thepowderbedwillbe insufficient to
completelymelt thepowderparticles. Therefore, anoptimumlayer thicknessmustbeestablished
toachievefiner resolutionandallowforgoodconnectivitybetween thepowder layerswith lesser
degreeofspheroidisation leadingto formationofdenserparts.Minimumlayer thicknesscanhelp in
improvingthequalityof themetallurgicalbondbetweensuccessive layersas ithelps increasingthe
penetrationdepthof themoltenpools resulting inmultipleremeltingof thepreviouslydeposited layer
andimprovingthewettingcharacteristics [61]. Layer thicknessalsohasaclose inverserelationship
with the total processing time and determines the amount of energy required tomelt a layer of
powder. Theeffectof layer thicknesson thedimensionalandmechanical featuresof the fabricated
tracks frommagnesiumpowder, suchasmeltingdepth,meltingwidth,oxidation,elasticmodulus,
andnanohardnesswasstudiedbySavalanietal. [58]. Intheirstudy,pulsedmodeNd:YAGlaserwitha
wavelengthof1.06μm,spotsizeof270μm,pulsedurationof20nsandamaximumpowerof30Wwas
usedtoprocess themagnesiumpowder. Scanningspeedswereadjustedbetween10and200mm/s
while the layer thickness varied from150 to 300μm. The results demonstrated that there exists a
criticalvalueof layer thicknessbeyondwhichsuccessful remeltingof thepreviouslyprocessed layers
wasnotpossible leadingto formationof irregularanddisruptedsurfaces,whichwas250μminthat
13
back to the
book 3D Printing of Metals"
3D Printing of Metals
- Title
- 3D Printing of Metals
- Author
- Manoj Gupta
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-592-2
- Size
- 17.0 x 24.4 cm
- Pages
- 170
- Keywords
- 3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
- Categories
- Naturwissenschaften Chemie