Page - 25 - in 3D Printing of Metals
Image of the Page - 25 -
Text of the Page - 25 -
Metals 2017,7, 2
lossescanbemoreproblematic incaseof lowzinczirconiumalloyswhereinevaporationanddecline
in thecontentofalloyingelementscanbedetrimental to themechanicalperformanceandcanleadto
degradationof functionalpropertiesofSLMedsample.
Evaporation of alloying elements taking place at higher laser energy densities during laser
meltingwill affect the stability of themoltenpool alongwith causing a variation in composition
andmicrostructure of the deposited layers [106]. Metal vaporization leads to formation of recoil
pressure in themoltenpool,which tends topush the liquidaway fromthemelt zone, resulting in
formationofakeyholedefect [108]. Formationofkeyholedefects results in inferiorsurfacequalityof
thespecimenshowingvaryingdepthsasobservedduringSLMofZK60alloys [62].Thedepletionof
alloyingelements leads toahigherdegreeofporosity in the laserprocessedparts limiting the levelof
maximumdensificationthatcanbeachieved.Composition inhomogeneities resultingfromselective
evaporationofelements isa functionof thevaporizationrateandthevolumeof themoltenpool [94].
Thus, careful controlandmanipulationofSLMprocessparameters is required toensure reduction
in theoccurrence of elemental redistribution andporosity. Loss of highvapourpressure alloying
elementscanbeeffectivelyminimizedbyregulatingthemoltenpool temperature,whichinturncanbe
achievedbycontrollingthebeampowerdensitydistributionincaseofcontinuouswaveirradiationand
adjusting thepulsingparameters incaseofpulsedwave irradiation[52].Although,high laserenergy
densities lead togreater evaporative losses, compositional inhomogeneities aremost pronounced
at lowenergydensity levelsdue to small size, and thehighsurface-to-volumeratio, of themolten
pool [94]. Inorder toavoidvaporizationofelementsduringSLMprocessingofmagnesiumalloys, it is
recommendedtoemploy laserprocessingparameterscombiningmediumorhighpowerwithhigh
scanningspeedsandalso it isnecessary to furtherunderstandthemechanism, to investigate themain
influencingfactorsandtobuildupthequantitativerelationshipbetweenthevaporization lossesand
SLMprocessparameters.
5.3. Balling
Balling phenomena are regarded as the typical microstructure occurring on surfaces of
SLM-processedparts fromabedof loose powder [39]. Balling is defined as an agglomeration of
theparticles,occurringwheretheliquidphasebreaksupintoarowofspherestoreducesurfaceenergy.
Asdiscussedpreviously,occurrenceof“balling”regionischaracterisedbytheagglomerationofaseries
ofball likeparticles to formlargesizemeltpoolsdueto insufficient input laserenergydensitycaused
byacombinationof lowlaserpower,highscanningspeed,andlarge layer thickness [41]. Themain
factor leadingtoballing is theGibbs-Marangonieffect,which is themass transferalonganinterface
betweentwofluidsdueto thesurface tensiongradient [109]. In termsof temperatureassociation, this
phenomenonisalsocalled thermo-capillaryconvection.DuringSLM, laserscanning isperformedline
by lineandthe laserenergycausesmeltingalongarowofpowderparticles, formingacontinuous
liquid scan track in a cylindrical shape. Thediminishing in the surface energyof the liquid track
continuesuntil thefinalequilibriumstate throughthebreakingupof thecylinder intoseveralmetallic
agglomerates in spherical shape [39]. Three kindsof ballingmechanismshavebeen identifiedby
Guetal. [73,110]duringSLSprocessingofCu-30CuSn-10CuPandstainlesssteelpowder. “First line
scanballing”isobservedwheninitial tracksonacoldpowderbedarescanned,causedbyhighthermal
gradients imposedonthemelt. “Shrinkage inducedballing” iscausedbythecapillary instabilityof
themeltpoolwhenhigherscanningspeedsareused. “Splash-inducedballing”with the formationof
a largeamountofmicrometre-scaleballsoccursatahigh laserpowercombinedwitha lowscanspeed,
becauseof theconsiderably lowviscosityandlonglifetimeof the liquid.
Figure 14 shows the occurrence of balling phenomenonobservedduring SLMprocessing of
Mg-9%Alpowders[60],whereinalargeamountofmicrometer-scaled(diameterof10–20μm)spherical
splashes, formedaroundthesinteredsurface, canbeseen.Whenrelativelyhigherscanningspeeds
were applied, laser energydensity of the laser input decreased causing a significant shrinkage in
interparticleareas, leadingtocapillary instabilityof themoltenpool. Therefore,dueto thereduction
25
back to the
book 3D Printing of Metals"
3D Printing of Metals
- Title
- 3D Printing of Metals
- Author
- Manoj Gupta
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-592-2
- Size
- 17.0 x 24.4 cm
- Pages
- 170
- Keywords
- 3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
- Categories
- Naturwissenschaften Chemie