Page - 30 - in 3D Printing of Metals
Image of the Page - 30 -
Text of the Page - 30 -
Metals 2017,7, 2
supportedbytheMgalloy. Inaddition,once thecorrosionwas initiated, therefinedMg7Zn3phases
distributedevenlyandmainlyservedasabarrier to impedecorrosionprocess. Similarly,Yangetal.,
duringSLMprocessingofMg-Mnalloys [66],observedthatcorrosionresistanceofpuremagnesium
wasenhancedbytheadditionMnofupto2wt%during immersiontestingcarriedout insimulated
bodyfluid (SBF) (pH7.4)at37 ◦Cfor48h. ThehydrogenvolumeevolutionobservedforMg-2Mn
alloy (0.017 mL·cm−2·h−1) was significantly lower than that of pure Mg (0.068 mL·cm−2·h−1).
The enhancement ofMgcorrosion resistancewas attributed to the increase in corrosionpotential
andgrain refinement causedby the solid solutionofMn. Further, they suggestedSLMprocessed
Mg-2Mnalloyasapotential candidate for futurebone implants.However, corrosion inbodyfluids
is influencedbyvarious factorssuchaspH,concentrationandtypesof ions,proteinadsorptionon
orthopedic implant, and influence of the biochemical activities of surrounding tissues [135,136].
Therefore, further investigations are still necessary to develop the reliability of SLM processed
magnesiumparts forbiomedicalapplications.
8. PotentialofSLMtoFabricatePorousMagnesiumStructures
Human bone has a hierarchical structure with three major anatomic cavities of different
sizeswhich are haversian canals (50μm) [137], osteocytic lacunae (fewmicrometres) [15,138,139],
and canaliculi (<1 μm) [140,141]. Each of the three cavities has amajor role in remodelling the
processesandmechanical integrityof thebone[14].Aporousstructureallowsadequatespaces for
transportationofnutrientsandforgrowthof livingtissues [142]. Especially formetallicorthopaedic
applications,byadjustingtheporosity levels, themodulusof thematerialscanbegreatlycontrolled
whichprovides anopportunity todesignmaterialswith amodulus closer to that of natural bone
therebymitigatingproblemsrelated tostress shielding[143].Metal cellular structurescanbeclassified
into structureswith stochastic and non-stochastic geometries.Metal stochastic porous structures
typicallyhavearandomdistributionofopenorclosedvoids,whereasmetalperiodiccellular lattice
structureshaveuniformstructuresthataregeneratedbyrepeatingaunitcell [144].Apart frommedical
fields,metalliccellular/porousstructureshavealsobeenbroadlyutilizedintheautomotive,aerospace,
andchemical industriesastheypossesslowerweight,goodenergyabsorptioncharacteristics,andgood
thermalandacousticproperties[145,146].However, it isdifficulttofabricatestructuresofsuchcomplex
externalshapesandintricate internalarchitecturesbyconventionalcastingandpowdermetallurgy
methods. Althoughtheshapeandsizeof theporescanbeadjustedbychanging theparametersof
thesemanufacturingprocesses,onlyarandomlyorganizedporousstructurecanbeachieved[144].
However,additivemanufacturing(AM)technologiescanfabricateporousmetalswithapredefined
external shapeandinternalarchitecture tomatchthemodulusorstiffnessofbone, therebyminimizing
oreliminatingstressshielding[147,148]. Selective lasermelting(SLM)offersasignificantadvantage
ofproducingsuchveryfineandporousstructureswhileat thesametimeaccommodatingavariety
ofshapes thatarenotonly limitedtoprismaticones [26]. Thismakes it thepreferredtechnologyfor
producingmetallic scaffoldsandimplants.Also,StudiesonSLMhaveshownthat the internaland
surfacefinishof the implantscanbetailoredtohaveselectivelyporousand/or lattice-likestructures
to promote osseo-integration (bonding between the bones and the implant) in the implants [42].
SLMtechnologyhasbeenusedtoproducecomplexporous/cellularstructuresdirectly fromdifferent
engineeringmaterials suchasstainlesssteel [144]andtitaniumalloys [108,149–151]andthereforehas
thepotential toproduceporousstructures inmagnesiumalloys. Inarecentstudy, Jaueretal. [65]were
successful in fabricatingscaffold-likestructureswithdesignedinterconnectedporosityoutofWE43
bymeansofSLM(Figure18).However, theprocessingparameters for fabricatingsuchstructuresare
currentlyunderdevelopmentanddetailsof researchinthisareaarenotavailable in theopenliterature.
30
back to the
book 3D Printing of Metals"
3D Printing of Metals
- Title
- 3D Printing of Metals
- Author
- Manoj Gupta
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-592-2
- Size
- 17.0 x 24.4 cm
- Pages
- 170
- Keywords
- 3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
- Categories
- Naturwissenschaften Chemie