Page - 119 - in 3D Printing of Metals
Image of the Page - 119 -
Text of the Page - 119 -
metals
Article
InvestigationonPorosityandMicrohardnessof316L
StainlessSteelFabricatedbySelectiveLaserMelting
ShahirMohdYusuf1,YifeiChen1,RichardBoardman2,ShoufengYang1 andNongGao1,*
1 MaterialsResearchGroup,FacultyofEngineeringandtheEnvironment,UniversityofSouthampton,
SouthamptonSO171BJ,UK;symy1g12@soton.ac.uk(S.M.Y.); chenyifeiuk@sina.com(Y.C.);
S.Yang@soton.ac.uk(S.Y.)
2 μ-VISX-RayImagingCentre,FacultyofEngineeringandTheEnvironment,UniversityofSouthampton,
SouthamptonSO171BJ,UK;rpb@soton.ac.uk
* Correspondence: n.gao@soton.ac.uk;Tel.:+44-23-8059-3396
AcademicEditor:ManojGupta
Received: 5 January2017;Accepted: 15February2017;Published: 20February2017
Abstract: This study investigates theporosity andmicrohardness of 316L stainless steel samples
fabricatedbyselective lasermelting(SLM).TheporositycontentwasmeasuredusingtheArchimedes
method and the advanced X-ray computed tomography (XCT) scan. High densiļ¬cation level
(ā„99%)witha lowaverageporositycontent (~0.82%)wereobtainedfromtheArchimedesmethod.
Thehighestporositycontent in theXCT-scannedsamplewas~0.61.However, thepores in theSLM
samples forbothcases (opticalmicroscopyandXCT)werenotuniformlydistributed. Thehigher
average microhardness values in the SLM samples compared to the wrought manufactured
counterpart are attributed to the ļ¬ne microstructures from the localised melting and rapid
solidiļ¬cationrateof theSLMprocess.
Keywords: porosity; microhardness; Selective LaserMelting (SLM); advancedX-ray computed
tomography(XCT)
1. Introduction
Additivemanufacturing(AM)isanadvancedmanufacturingprocesswhich involves layer-wise
materialadditionto fabricate three-dimensional (3D)objectsbasedonpre-deļ¬nedComputerAided
Design(CAD)data. This technologypossesses theadvantageofdesignļ¬exibility,whichenables the
fabricationofpartswithcomplexgeometriesandintricate featurescomparedto traditionalprocesses
suchas castingand forging. Inaddition, theadditivenatureof thisprocess allowscomponents to
bemanufacturedwithmuch less rawmaterialwastagewhichcould reducematerial costs and the
environmental footprint [1,2]. TheAMofmetal componentshasevolvedfromrapidprototyping(RP)
to fabricationof functionalmetallic components forendusesuchas in theautomotive,biomedicaland
aerospace industries [3,4].
VariousAMprocesses formetalshavebeenwelldescribedandreviewed[5,6]. Selective laser
melting(SLM) isoneof themajorAMtechnologies thathasbeenusedtoprocessanumberofmetals
andalloys, e.g.,Ti6Al4V[7],β-typeTiā24Nbā4Zrā8Sn[8,9],Nisuperalloy [10]and316Lstainlesssteel
(316LSS) [11], forawiderangeofapplications, includingbone implants [12], turbineblades [13]and
automotivepistons [3]. InSLMtechnology, the laserbeamisusedtocompletelymeltmetalpowder
layersspreadonapowderbedto formnear-net-shapedcomponents. In thisprocess,3Dmodelsare
ļ¬rstslicedinto2Dcross-sectionswithaset thicknessvalue. Thelaserbeamthenscansthecross-section
of thedesignedpart layerby layerbeforeselectively fusingthemontopofeachother,whichenables
theļ¬nal3Dpart tobe formeddirectly.
Metals 2017,7, 64 119 www.mdpi.com/journal/metals
back to the
book 3D Printing of Metals"
3D Printing of Metals
- Title
- 3D Printing of Metals
- Author
- Manoj Gupta
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-592-2
- Size
- 17.0 x 24.4 cm
- Pages
- 170
- Keywords
- 3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
- Categories
- Naturwissenschaften Chemie