Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
3D Printing of Metals
Page - 127 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 127 - in 3D Printing of Metals

Image of the Page - 127 -

Image of the Page - 127 - in 3D Printing of Metals

Text of the Page - 127 -

Metals 2017,7, 64 isattributed to thefine-grainmicrostructuresobtained in thecompletedparts resulting inahigher dislocationdensityofaustenitecells [49]. Thismakesslipmotionalongthegrainboundariesdifficult, thus increasing its strengthandresistance todeformation.Althoughthere is someporositycontent in theSLMsamples inthisstudy, thedefect isnotexpectedtohaveasignificant impactonthemechanical propertiesof thefinalpart since theSLMprocessingwasable toyieldhighdensification levels (>99%) and the average porositywas also very low (~0.33%). Nevertheless, the porosity-microhardness relationship isan importantaspect toconsiderwhenSLMisusedtomanufacture functionalpartssuch asbone implantsandindustrial tools. Figure11.Averagemicrohardness (HV)values forSLMandWMspecimens. 4.Conclusions TheSLM-built316LSSsampleswereable toachievehighdensification levels (>99%)witha low averageporositycontent (~0.82%). Eventhoughtheporositycontent in theSLM-builtpartswasvery low, theporeswerenotevenlydistributedthroughout thesamples. Thehighestporositycontent in theconcentratedregionswas foundtobe~1.68%whichwashigher thantheoverall average. Such lowporositycontentdoesnotshowanobvious impactonthemechanicalpropertiesof theAM316L SSsamplesproducedinthisstudy. Thehigheraveragemicrohardnessvaluesof theSLM-fabricated 316LSSpartscomparedto theirwroughtmanufacturedcounterpartwereprimarilyattributedto the localisedmeltingof thepowder layers, and the rapidheating/coolingcycle involvedduringSLM contributedto thefine-grainmicrostructures in thecompletedparts. AuthorContributions:ShahirMohdYusufanalysedthedataandwrote themanuscript;YifeiChencarriedout theexperimentsandanalysedthedata;RichardBoardmanpreparedandcarriedout theXCTscan;ShoufengYang andNongGaoareexperts inadditivemanufacturing(AM)andmetallurgy, respectively,andtheyalsomanaged andsupervisedtheproject. Conflictsof Interest:Theauthorsdeclarenoconflictof interest. References 1. Cherry, J.A.;Davies,H.M.;Mehmood,S.;Lavery,N.P.;Brown,S.G.R.; Sienz, J. Investigation into theeffectof processparametersonmicrostructuralandphysicalpropertiesof316Lstainlesssteelpartsbyselective laser melting. Int. J.Adv.Manuf. Technol. 2014,76, 869–879. [CrossRef] 2. Yusuf, S.M.; Gao, N. Influence of energy density on metallurgy and properties in metal additive manufacturing.Mater. Sci. Technol. 2017. [CrossRef] 3. Guo,N.;Leu,M.C.Additivemanufacturing: Technology,applicationsandresearchneeds.Front.Mech. Eng. 2013,8, 215–243. [CrossRef] 127
back to the  book 3D Printing of Metals"
3D Printing of Metals
Title
3D Printing of Metals
Author
Manoj Gupta
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-592-2
Size
17.0 x 24.4 cm
Pages
170
Keywords
3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
Categories
Naturwissenschaften Chemie
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
3D Printing of Metals