Page - 137 - in 3D Printing of Metals
Image of the Page - 137 -
Text of the Page - 137 -
Metals 2017,7, 113
Figure7. (a)Test set-upforhole-flanging; (b) specimengeometrywithandwithoutcladding.
Table2.Overviewofhole-flangingexperiments.
Thickness [mm] CladdingPosition HoleDiameter [mm] HoleExpansion[%]
2.0/2.5 None 8.0 25.0
2.7 inside/outside 8.0 25.0
2.0/2.5 None 7.5 33.3
2.7 inside/outside 7.5 33.3
2.0/2.5 None 7.0 42.9
2.7 inside/outside 7.0 42.9
3.Results
3.1. Results forDemonstrator I—StiffnessManagement
3.1.1. Resultsof theSizingOptimization
The solution of the sizing optimization is shown in Figure 8 in terms of thickness increase
vs. thicknessof basematerial. Anoptimal increase in stiffnessunder thegivenmass constraint is
obtainedbyanon-linear increase in sheet thickness ina ring-shapedarea close to the centralhole.
Sizingoptimizationyields a smooth transitionbetween thickenedareaand theflat top faceof the
component towardstheouterradiusof thepart,anda jumpinsheet thickness towardsthecentralhole.
Figure8.Resultofsizingoptimization. (a)Optimumthicknessdistribution; (b)Optimumunder the
constraint thatan innerradiusof15mmisnotusedforcladding.
137
back to the
book 3D Printing of Metals"
3D Printing of Metals
- Title
- 3D Printing of Metals
- Author
- Manoj Gupta
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-592-2
- Size
- 17.0 x 24.4 cm
- Pages
- 170
- Keywords
- 3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
- Categories
- Naturwissenschaften Chemie