Page - 145 - in 3D Printing of Metals
Image of the Page - 145 -
Text of the Page - 145 -
metals
Article
MorphologyAnalysisofaMultilayerSinglePassvia
NovelMetalThin-WallCoatingForming
XinWang*, JunDu,ZhengyingWei,XueweiFang,GuangxiZhao,HaoBai,WeiLiu,
ChuanqiRenandYunfeiYao
StatekeyLaboratoryofManufacturingSystemEngineering,XiāanJiaotongUniversity,Xiāan710049,China;
jundu2010@mail.xjtu.edu.cn(J.D.); zywei@mail.xjtu.edu.cn(Z.W.); fangxuewei0920@gmail.com(X.F.);
zgx6464946@gmail.com(G.Z.); zzujixiebaihao@163.com(H.B.); tyutliuwei@163.com(W.L.);
legend7718@163.com(C.R.);yyf931012@stu.xjtu.edu.cn(Y.Y.)
* Correspondence: linkwangxin@aol.com;Tel.:+86-15667083308
AcademicEditor:ManojGupta
Received: 30 June2016;Accepted: 24November2016;Published: 9December2016
Abstract:Throughusinganovelmicro-coatingmetaladditivemanufacturing(MCMAM)process
in thisstudy, the formingcharacteristicsof themultilayersingle-passspecimenswere investigated.
The forming defects including the porosity and the bonding quality between layers were
analyzed. Moreover, we also attempted to study the effect of process parameters such as ļ¬ow
rate, deposition velocity, and layer thickness on the formingmorphology. Based on the results,
theoptimizationofprocessparameterswas conducted for the fabricationof thin-wallMCMAM.
Finally, estimationcriteria for the integrityof the interfacialbondwereestablished.
Keywords: additivemanufacturing; formingdefects;bondingquality; formingmorphology
1. Introduction
Additive manufacturing (AM) has attracted much attention from the public due to its
unique advantages, such as unrivalled design freedom and short lead times [1]. It can produce
high-performancemetalcomponentsrapidlyusingalloypowderorwiresasrawmaterialandapplying
ahigh-power laserorelectronbeamasaheatsource [2ā5].However, thehighcapital costsandslow
throughputprintinghaveseverelyrestricted itsapplication.
To overcome the shortages of traditional AM,micro-coatingmetal additivemanufacturing
(MCMAM)hasbeenproposedasacommercialmanufacturing technology.Comparedwith traditional
metalAMtechnologies,MCMAMhasshownseveraladvantages.Atļ¬rst, itprovidesahighermaterial
utilizationthanselective lasermelting(SLM)withahighdepositionrate. Second, itproduces lessdust
pollutionthanpowder-basedequipmentwhenthepowdermaterialwasrecycled. Third, ithasa lower
equipmentcost thanSLMandelectronbeammachining(EBM)[6].
Xiongetal. investigatedtheformingcharacteristicsofamultilayersinglepasswiththeapplication
ofGMAW-basedadditivemanufacturing [7]. Jorge et al. developeda fuseddepositionmodeling
(FDM)systemformetals thatcandepositelectronicstructuresdirectly [8]. Yaoetal. adoptedametal
dropletdepositionmanufacturingprocess toreduceproductdevelopment timeaswellas thecostof
manufacturing[9].However,depositionaccuracywasdifļ¬cult tocontrol. Inaddition, thenovelmetal
additivemanufacturingprocessproposedinthispaperwasanalyzedusinganumerical simulation
method.Nevertheless, the inļ¬uencesofprocessparametersontheformingmorphologyhavenever
beenmentioned[10].
Therefore, thispaper is aimedat investigating the effects of themajorprocessparameters on
the formingmorphologyandthebondingqualitybetweenlayersduringthemicro-coatingadditive
Metals 2016,6, 313 145 www.mdpi.com/journal/metals
back to the
book 3D Printing of Metals"
3D Printing of Metals
- Title
- 3D Printing of Metals
- Author
- Manoj Gupta
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-592-2
- Size
- 17.0 x 24.4 cm
- Pages
- 170
- Keywords
- 3D printing, additive manufacturing, electron beam melting, selective laser melting, laser metal deposition, aluminum, titanium, magnesium, composites
- Categories
- Naturwissenschaften Chemie