Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
Advanced Chemical Kinetics
Page - 52 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 52 - in Advanced Chemical Kinetics

Image of the Page - 52 -

Image of the Page - 52 - in Advanced Chemical Kinetics

Text of the Page - 52 -

5. Summary HCCI is an alternative engine combustion process with potential for efficiencies as high as com- pression ignition (CI) engines while producing ultra-low particulate matter (PM) and nitrogen oxides (NOx) emissions. HCCI engines operate on the principle of having a dilute premixed charge as like SI engines, which reacts and combusts throughout the in-cylinder as it is com- pressed by the piston. As stated above, HCCI incorporates the best features of both SI and CI engines. As like in SI engines, the charge is well mixed, which minimizes particulate emissions, and as like in CI engines, the in-cylinder charge is compression ignited by piston without the throttling losses, which leads to high thermal efficiency. Experiments and analysis to date sug- gest that chemical kinetics dominates thermal autoignition in HCCI. Detailed chemical-kinet- ics approaches have the advantage of directly simulating all the chemical processes leading to autoignition in HCCI engine. Detailed chemical-kinetic mechanisms have been developed for a wide variety of fuels, including methane, dimethyl ether (DME), iso-octane, n-heptane and many others. These mechanisms capture reaction rate information for elementary reaction steps. In other words, they capture the collisions that convert on molecule to another. The advantage of detailed chemical kinetics is that the processes leading to ignition are directly modeled and processes such as low-temperature reactions (LTR), intermediate-temperature reactions (ITR) and high-temperature reactions (HTR) can be solved. Numerical calculations for HCCI are often conducted with lumped (single-zone model) chemical-kinetics models, which assume spatially uniform temperature, pressure and composition in a fixed-mass, variable volume reactor. For this chapter, a zero-dimensional single-zone engine model of ‘CHEMKIN’ in Chemkin-Pro is applied to investigating the autoignition and chemical-kinetic mechanisms of HCCI combustion for the fuels with various autoignition reactivity. This is done for four fuels: methane, dimethyl ether (DME), iso-octane and n-heptane. Methane and iso-octane are selected as the single-stage ignition fuel, and DME and n-heptane are selected as the two-stage ignition fuel. A detailed chemical-kinetic mechanism for methane and DME is Mech_56.54 (113 species and 710 reactions). For iso-octane and n-heptane, a detailed chemical-kinetic mechanism from Lawrence Livermore National Laboratory (1034 species and 4236 reactions) is used. The results show that methane and iso-octane only exhibit the main heat release, ‘high-temperature heat release (HTHR)’ by HTR. In contrast, both DME and n-heptane exhibit the first heat-release ‘low-temperature heat release (LTHR)’ associated with LTR before HTHR. Because the LTHR accelerates the temperature rise towards the end of the compression stroke, the initial temperature has to be reduced to achieve the same combustion phasing. For a given initial pressure, a lower initial temperature leads to higher charge density and thus the higher amount of fuel when ϕo is constant. Eventually, the higher amount of fuel is advantageous for increasing the power output of HCCI engines. Abbreviations and nomenclature BDC Bottom dead centre CAI Controlled auto ignition CI Compression ignition Advanced Chemical Kinetics52
back to the  book Advanced Chemical Kinetics"
Advanced Chemical Kinetics
Title
Advanced Chemical Kinetics
Author
Muhammad Akhyar Farrukh
Editor
InTech
Location
Rijeka
Date
2018
Language
English
License
CC BY 4.0
ISBN
978-953-51-3816-7
Size
18.0 x 26.0 cm
Pages
226
Keywords
Engineering and Technology, Chemistry, Physical Chemistry, Chemical Kinetics
Categories
Naturwissenschaften Chemie
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Advanced Chemical Kinetics