Page - (000079) - in Biomedical Chemistry: Current Trends and Developments
Image of the Page - (000079) -
Text of the Page - (000079) -
Tetraoxanepyrimidine nitrile as dual stage antimalarials. Journal of Medicinal Chemistry, 57,
4916-4923.
Olson, J. E., Lee, G. K., Semenov, A., & Rosenthal, P. J. (1999). Antimalarial effects in mice of
orally administered peptidyl cysteine protease inhibitors. Bioorganic & Medicinal
Chemistry, 7(4), 633-638.
O’Neill, P. M., Stocks, P. A., Pugh, M. D., Araujo, N. C., Korshin, E. E., Bickley, J. F., Ward, S. A.,
Bray, P. G., Pasini, E., Davies, J., Verissimo, E., & Bachi, M. D. (2004). Design and Synthesis
of Endoperoxide Antimalarial Prodrug Models. Angewandte Chemie International Edition, 43,
4193-4197.
Potashman, M. H., & Duggan, D. E. (2009). Covalent modifiers: an orthogonal approach to drug
design. Journal of Medicinal Chemistry, 52, 1231–1246.
Powers, J. C., Asgian, J. L., Ekici, O. D., & James K. E. (2002). Irreversible inhibitors of serine,
cysteine, and threonine proteases. Chemical Reviews, 102, 4639–4750.
Pritchard, R. B., Lough, C. E., Currie, D. J., & Holmes, H. L. (1968). Equilibrium Reactions of N-
Butanethiol with Some Conjugated Heteroenoid Compounds. Canadian Journal of Chemistry,
46, 775–781.
Robertson, J.G. (2005). Mechanistic basis of enzyme-targeted drugs. Biochemistry, 44, 5561–
5571.
Robertson, J.G. (2007). Enzymes as a special class of therapeutic target: clinical drugs and
modes of action. Current Opinion in Structural Biology, 17, 674–679.
Roush, W. R., Cheng, J. M., Knapp-Reed, B., Alvarez-Hernandez, A., McKerrow, J. H., Hansell, E., &
Engel, J. C. (2001). Potent second generation vinyl sulfonamide inhibitors of the
trypanosomal cysteine protease cruzain. Bioorg. ACS Medicinal Chemistry Letters, 11(20),
2759-2762.
Santos, M. M. M., & Moreira, R. (2007). Michael acceptors as cysteine protease inhibitors. Mini-
Reviews in Medicinal Chemistry, 7(10), 1040-1050.
Serafimova, I. M., Pufall, M. A., Krishnan, S., Duda, K., Cohen, M. S., Maglathlin, R. L.,
McFarland, J. M., Miller, R. M., Frödin, M., Taunton, J. (2012). Reversible targeting of
noncatalytic cysteines with chemically tuned electrophiles. Nature Chemical Biology, 8, 471-
476.
Shenai, B. R., Lee, B. J., Alvarez-Fernandes, A., Chong, P. Y., Emal, C. D., Neitz, R. J., Roush, W. R.,
& Rosenthal, P. J. (2003). Structure-activity Relationships for Inhibition of Cysteine Protease
Activity and Development of Plasmodium falciparum by Peptidyl Vinyl Sulfones.
Antimicrobial Agents and Chemotherapy, 47, 154-160.
Singh, J., Petter, R.C., Baillie, T.A., & Whitty, A. (2011). The resurgence of covalent drugs. Nature
Reviews Drug Discovery, 10, 307–317.
Tan, J., George, S., Kusov, Y., Perbandt, M., Anemueller, S., Mesters, J. R., Norder, H., Coutard,
B., Lacroix, C., Leyssen, P., Neyts, J., & Hilgenfeld, R. (2013). 3C Protease of Enterovirus 68:
Structure-Based Design of Michael Acceptor Inhibitors and Their Broad-Spectrum Antiviral
Effects against Picornaviruses. Journal of Virology, 87(8), 4339-4351.
Thompson, S. A., Andrews, P. R., & Hanzlik, R. P. (1986). Carboxyl-modified Amino-acids and
Peptides as Protease Inhibitors. Journal of Medicinal Chemistry, 29(1), 104-111.
Wilkinson, S. R., & Kelly, J. M. (2009). Trypanocidal drugs: mechanisms, resistance and new
targets. Expert Reviews in Molecular Medicine, 11, e31.
Biomedical Chemistry: Current Trends and Developments
- Title
- Biomedical Chemistry: Current Trends and Developments
- Author
- Nuno Vale
- Publisher
- De Gruyter Open Ltd
- Date
- 2016
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-11-046887-8
- Size
- 21.0 x 29.7 cm
- Pages
- 427
- Keywords
- Physical Sciences, Engineering and Technology, Chemistry, Organic Chemistry, Green Chemistry
- Categories
- Naturwissenschaften Chemie