Page - 38 - in Cancer Nanotheranostics - What Have We Learnd So Far?
Image of the Page - 38 -
Text of the Page - 38 -
Dawidczyketal. Nanomedicines for cancer therapy
Table3 |Summaryofnanoparticleplatformsfornanomedicine.
Particle type Composition/Structure Properties Applications
Polymer e.g.,PLGA,glycerol, chitosan,DNA;
monomers, copolymers,hydrogels Somebiodegradable Drugdelivery; passive release
(diffusion), controlled release
(triggered)
Dendrimer PAMAM,etc. Lowpolydispersity, cargo,
biocompatible Drugdelivery
Lipid Liposomes,micelles Cancarryhydrophobiccargo,
biocompatible, typically50–500nm Drugdelivery
Quantumdots CdSe,CulnSe,CdTe,etc. Broadexcitation,nophotobleaching,
tunableemission, typically5–100nm Optical imaging
Gold Spheres, rods,or shells Biocompatibility, typically5–100nm Hyperthermia therapy,drugdelivery
Silica Spheres, shells,mesoporous Biocompatibility Contrast agents,drugdelivery
(encapsulation)
Magnetic Ironoxideorcobalt-based; spheres,
aggregates indextranorsilica Superparamagnetic, ferromagnetic
(small remanence tominimize
aggregation), superferromagnetic
(∼10nm),paramagnetic Contrast agents (MRI), hyperthermia
therapy
Carbon-based Carbonnanotubes,buckyballs,
graphene Biocompatible Drugdelivery
Organic polymer systems include synthetic polymers [e.g.,
polyethyleneimine (PEI),polyethyleneglycol] (Knopet al., 2010;
Nicolas et al., 2013), synthetic hydrogels (e.g., polyacrylamide)
(Ando et al., 2012; Liechty andPeppas, 2012), natural polymers
(e.g., chitosan, hyaluronic acid, alginate, gelatin) (Ando et al.,
2012) and hydrolytically or enzymatically degradable polymers
(e.g., collagen, polylactic acid, polycaprolactone) (Balogh et al.,
2007).Combinationsofcomponentsand/ormonomerunits and
incorporation of other building blocks such asDNA contribute
to theflexibilityofpolymer-basednanoparticleplatforms.These
systems can be passively loaded with a cargo, or a cargo can
be incorporated to allow triggered release (Davis et al., 2008).
Particles such as block copolymers, liposomes, and dendrimers
canprovideareservoir for largeamountsof cargo.Blockcopoly-
mers combine the attributes of two or more monomer units
allowing further functionality (Duncan, 2006;GrecoandVicent,
2009). Lipid-basednanoparticles includemicelles, liposomes, or
water oil emulsions. Dendrimers are hyperbranched synthetic
polymers forwhichbiodistribution, size, andmultifunctionality
canbe tunedwithavery lowdegreeofpolydispersity (Choetal.,
2008). Proteins (e.g., albumin) (Fuchs and Coester, 2010) and
viruses (Steinmetz, 2010) have also been extensively studied for
drugandgenedelivery. Inorganic nanoparticles provide advantages in function and
properties not possible with organic nanoparticle platforms,
althoughthisisoftenattheexpenseofbiocompatibility.Examples
ofmaterials include semiconductors (quantumdots) (Gaoet al.,
2004;Medintzet al., 2005;Michalet et al., 2005;Parket al., 2011;
Chen et al., 2012a; Petryayeva et al., 2013), silica (Vanblaaderen
andVrij, 1992; Giri et al., 2005, 2007; Burns et al., 2006), gold
(BoisselierandAstruc,2009;Arvizoetal., 2010),magneticmate-
rials (Arruebo et al., 2007; Banerjee et al., 2010; Haun et al.,
2010),andcarbon-basedmaterials(Pratoetal.,2008; Jain,2012).
Semiconductor nanoparticles, or quantum dots, have a narrow
andtunableemissionspectrum,abroadexcitationspectrum,and
donotphotobleach.These characteristics are attractive for opti-
cal imaging, however,manyquantumdots are synthesized from
heavy metal elements and hence toxicity is a concern. Silicon
dioxide (silica), themost widely used oxide, is a versatilemate-
rial that is relatively inert. Silica canbeused toencapsulateother
materials or cargoes and the surface can be conjugated using
silane chemistry. Silica can be synthesizedwith nanometer scale
pores (mesoporoussilica) thatcanbeused toholdothercargoes.
Of themetallicmaterials, gold iswidelyused forbiologicalappli-
cationsas it iseasytosynthesize,canbefunctionalizedusingthiol
chemistry,andisrelatively inert.Manyofthenoblemetalsabsorb
Frontiers inChemistry | ChemicalEngineering August2014 |Volume2 |Article69 | 38
Cancer Nanotheranostics
What Have We Learnd So Far?
- Title
- Cancer Nanotheranostics
- Subtitle
- What Have We Learnd So Far?
- Authors
- João Conde
- Pedro Viana Baptista
- Jesús M. De La Fuente
- Furong Tian
- Editor
- Frontiers in Chemistry
- Date
- 2016
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-2-88919-776-7
- Size
- 21.0 x 27.7 cm
- Pages
- 132
- Keywords
- Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
- Categories
- Naturwissenschaften Chemie