Page - 46 - in Cancer Nanotheranostics - What Have We Learnd So Far?
Image of the Page - 46 -
Text of the Page - 46 -
Dawidczyketal. Nanomedicines for cancer therapy
Morales-Avila, E., Ferro-Flores,G.,Ocampo-Garcia, B. E.,DeLeon-Rodriguez, L.
M., Santos-Cuevas, C. L., Garcia-Becerra, R., et al. (2011).Multimeric system
of99mTc-labeledgoldnanoparticlesconjugatedtoc[RGDfK(C)]formolecular
imaging of tumor alpha(v)beta(3) expression.Bioconjug. Chem. 22, 913–922.
doi:10.1021/bc100551s
Mullard,A. (2013).Maturing antibody-drug conjugate pipeline hits 30.Nat. Rev.
DrugDiscov.12,329–332.doi:10.1038/nrd4009
Muller,C.,andSchibli,R.(2013).Prospectsinfolatereceptor-targetedradionuclide
therapy.Front.Oncol.3:249.doi:10.3389/fonc.2013.00249
Natarajan, A., Gruettner, C., Ivkov, R., Denardo, G. L., Mirick, G., Yuan, A.,
et al. (2008). NanoFerrite particle based radioimmunonanoparticles: binding
affinity and in vivo pharmacokinetics. Bioconjug. Chem. 19, 1211–1218. doi:
10.1021/bc800015n
Naumann, R. W., Coleman, R. L., Burger, R. A., Sausville, E. A., Kutarska, E.,
Ghamande, S. A., et al. (2013). PRECEDENT: a randomized phase ii trial
comparing vintafolide (EC145) and Pegylated LiposomalDoxorubicin (PLD)
in combination versus PLD alone in patients with platinum-resistant ovarian
cancer. J.Clin.Oncol. 31,4400–4406.doi:10.1200/JCO.2013.49.7685
Nicolas, J., Mura, S., Brambilla, D., Mackiewicz, N., and Couvreur, P. (2013).
Design, functionalization strategies and biomedical applications of targeted
biodegradable/biocompatible polymer-based nanocarriers for drug delivery.
Chem.Soc.Rev.42,1147–1235.doi:10.1039/c2cs35265f
Niemeyer, C.M. (2001). Nanoparticles, proteins, and nucleic acids: biotechnol-
ogymeetsmaterials science.Angew. Chem. Int. Ed. Engl. 40, 4128–4158. doi:
10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S
Novio, F., Simmchen, J., Vazquez-Mera, N., Amorin-Ferre, L., and Ruiz-Molina,
D.(2013).Coordinationpolymernanoparticles inmedicine.Coord.Chem.Rev.
257,2839–2847.doi:10.1016/j.ccr.2013.04.022
Ohguchi, Y., Kawano,K.,Hattori, Y., andMaitani, Y. (2008). Selective delivery of
folate-PEG-linked, nanoemulsion-loaded aclacinomycinA toKBnasopharyn-
gealcellsandxenograft: effectofchain lengthandamountof folate-PEGlinker.
J.DrugTarget.16,660–667.doi:10.1080/10611860802201464
Ohno, K., Mori, C., Akashi, T., Yoshida, S., Tago, Y., Tsujii, Y., et al. (2013).
Fabricationof contrast agents formagnetic resonance imaging frompolymer-
brush-afforded iron oxide magnetic nanoparticles prepared by surface-
initiated living radical polymerization.Biomacromolecules 14, 3453–3462. doi:
10.1021/bm400770n
Oyewumi, M. O., Yokel, R. A., Jay, M., Coakley, T., andMumper, R. J. (2004).
Comparisonofcelluptake,biodistributionandtumorretentionoffolate-coated
and PEG-coated gadoliniumnanoparticles in tumor-bearingmice. J. Control.
Release95,613–626.doi:10.1016/j.jconrel.2004.01.002
Pack,D.W.,Hoffman,A. S., Pun, S., andStayton, P. S. (2005).Design anddevel-
opment of polymers for gene delivery.Nat. Rev.DrugDiscov. 4, 581–593. doi:
10.1038/nrd1775
Paraskar, A., Soni, S., Roy, B., Papa, A. L., and Sengupta, S. (2012).
Rationally designed oxaliplatin-nanoparticle for enhanced antitumor efficacy.
Nanotechnology23:075103.doi:10.1088/0957-4484/23/7/075103
Park, J., Dvoracek, C., Lee, K. H., Galloway, J. F., Bhang, H. E. C., Pomper, M.
G., et al. (2011). CuInSe/ZnS Core/Shell NIR quantum dots for biomedical
imaging.Small7,3148–3152.doi:10.1002/smll.201101558
Parker, N., Turk,M. J.,Westrick, E., Lewis, J. D., Low, P. S., and Leamon, C. P.
(2005).Folatereceptorexpressionincarcinomasandnormaltissuesdetermined
by a quantitative radioligandbinding assay.Anal. Biochem. 338, 284–293. doi:
10.1016/j.ab.2004.12.026
Penate Medina, O., Haikola, M., Tahtinen, M., Simpura, I., Kaukinen, S.,
Valtanen, H., et al. (2011). Liposomal tumor targeting in drug delivery uti-
lizingMMP-2- andMMP-9-binding ligands. J. DrugDeliv. 2011, 160515. doi:
10.1155/2011/160515
Petersen, A. L., Binderup, T., Jolck, R. I., Rasmussen, P., Henriksen, J. R.,
Pfeifer, A. K., et al. (2012). Positron emission tomography evaluation of
somatostatin receptor targeted 64Cu-TATE-liposomes in a human neuroen-
docrine carcinoma mouse model. J. Control. Release 160, 254–263. doi:
10.1016/j.jconrel.2011.12.038
Petryayeva,E.,Algar,W.R.,andMedintz,I.L.(2013).Quantumdotsinbioanalysis:
a reviewof applications across variousplatforms forfluorescence spectroscopy
andimaging.Appl.Spectrosc.67,215–252.doi:10.1366/12-06948
Piscitelli, S. C., Rodvold, K. A., Rushing, D. A., and Tewksbury, D. A. (1993).
Pharmacokineticsandpharmacodynamicsofdoxorubicininpatientswithsmall
cell lungcancer.Clin.Pharmacol.Ther.53,555–561.doi:10.1038/clpt.1993.69 Poon,Z., Lee, J. A.,Huang, S., Prevost, R. J., andHammond,P.T. (2011).Highly
stable, ligand-clustered “patchy”micelle nanocarriers for systemic tumor tar-
geting.Nanomedicine7,201–209.doi:10.1016/j.nano.2010.07.008
Prato,M.,Kostarelos,K., andBianco,A. (2008).Functionalizedcarbonnanotubes
indrugdesignanddiscovery.Acc.Chem.Res.41,60–68.doi:10.1021/ar700089b
Puvanakrishnan,P.,Park, J.,Chatterjee,D.,Krishnan,S., andTunnell, J.W.(2012).
Invivo tumor targetingofgoldnanoparticles: effectofparticle typeanddosing
strategy. Int. J.Nanomedicine7,1251–1258.doi:10.2147/IJN.S29147
Reddy, L. H., Sharma, R. K., and Murthy, R. R. (2006). Enhanced delivery of
etoposide toDalton’s lymphoma inmice throughpolysorbate20micelles.Acta
Pharm.56,143–155.
Rijcken,C. J., Snel,C. J., Schiffelers, R.M.,VanNostrum,C. F., andHennink,W.
E. (2007). Hydrolysable core-crosslinked thermosensitive polymeric micelles:
synthesis, characterisationand invivo studies.Biomaterials28,5581–5593.doi:
10.1016/j.biomaterials.2007.08.047
Robinson, J. T., Hong, G. S., Liang, Y. Y., Zhang, B., Yaghi, O. K., andDai, H. J.
(2012). InVivofluorescence imaging in the secondnear-infraredwindowwith
long circulating carbon nanotubes capable of ultrahigh tumor uptake. J. Am.
Chem.Soc.134,10664–10669.doi:10.1021/ja303737a
Rong, P. F., Yang, K., Srivastan, A., Kiesewetter, D. O., Yue, X. Y., Wang,
F., et al. (2014). Photosensitizer loaded nano-graphene for multimodality
imaging guided tumor photodynamic therapy. Theranostics 4, 229–239. doi:
10.7150/thno.8070
Rossin,R.,Pan,D.P. J.,Qi,K.,Turner, J.L., Sun,X.K.,Wooley,K.L., et al. (2005).
Cu-64-labeled folate-conjugated shell cross-linked nanoparticles for tumor
imaging and radiotherapy: synthesis, radiolabeling, and biologic evaluation.
J.Nucl.Med.46,1210–1218.
Ruoslahti, E. (1996). RGD and other recognition sequences for integrins.Annu.
Rev.CellDev.Biol.12,697–715.doi:10.1146/annurev.cellbio.12.1.697
Sailor, M. J., and Park, J. H. (2012). Hybrid nanoparticles for detection and
treatmentofcancer.Adv.Mater.24,3779–3802.doi:10.1002/adma.201200653
Sassoon,I.,andBlanc,V.(2013).Antibody-drugconjugate(ADC)clinicalpipeline:
a review.MethodsMol.Biol.1045,1–27.doi:10.1007/978-1-62703-541-5_1
Seynhaeve, A. L. B., Dicheva, B.M., Hoving, S., Koning, G. A., and TenHagen,
T. L.M. (2013). Intact Doxil is taken up intracellularly and released doxoru-
bicin sequesters in the lysosome: evaluatedby in vitro/in vivo live cell imaging.
J.Control.Release172,330–340.doi:10.1016/j.jconrel.2013.08.034
Sheldrake,H.M., andPatterson, L.H. (2009). Function andantagonismofbeta3
integrins in the development of cancer therapy.Curr. Cancer Drug Targets 9,
519–540.doi:10.2174/156800909788486713
Shi, S. X., Yang, K., Hong, H., Valdovinos, H. F., Nayak, T. R., Zhang,
Y., et al. (2013). Tumor vasculature targeting and imaging in living
mice with reduced graphene oxide. Biomaterials 34, 3002–3009. doi:
10.1016/j.biomaterials.2013.01.047
Shiraishi, K., Kawano, K., Minowa, T., Maitani, Y., and Yokoyama, M.
(2009). Preparation and in vivo imaging of PEG-poly(L-lysine)-based poly-
meric micelle MRI contrast agents. J. Control. Release 136, 14–20. doi:
10.1016/j.jconrel.2009.01.010
Sievers,E.L.,andSenter,P.D.(2013).Antibody-drugconjugates incancertherapy.
Annu.Rev.Med.64,15–29.doi:10.1146/annurev-med-050311-201823
Silverman, J. A., andDeitcher, S. R. (2013).Marqibo(R) (vincristine sulfate lipo-
some injection) improves the pharmacokinetics and pharmacodynamics of
vincristine.Cancer Chemother. Pharmacol. 71, 555–564. doi: 10.1007/s00280-
012-2042-4
Soundararajan,A.,Bao,A.,Phillips,W.T.,Perez,R., andGoins,B.A. (2009). [Re-
186]Liposomaldoxorubicin (Doxil): in vitro stability, pharmacokinetics, imag-
ingandbiodistribution inaheadandnecksquamouscell carcinomaxenograft
model.Nucl.Med.Biol.36,515–524.doi:10.1016/j.nucmedbio.2009.02.004
Sparreboom, A., Scripture, C. D., Trieu, V., Williams, P. J., De, T., Yang, A.,
et al. (2005). Comparative preclinical and clinical pharmacokinetics of a
cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and pacli-
taxel formulated inCremophor (Taxol).Clin. Cancer Res. 11, 4136–4143. doi:
10.1158/1078-0432.CCR-04-2291
Steichen,S.D.,Caldorera-Moore,M.,andPeppas,N.A.(2012).Areviewofcurrent
nanoparticleandtargetingmoieties for thedeliveryofcancer therapeutics.Eur.
J.Pharm.Sci.48,416–427.doi:10.1016/j.ejps.2012.12.006
Steinmetz,N.F.(2010).Viralnanoparticlesasplatformsfornext-generationthera-
peuticsandimagingdevices.Nanomed.Nanotechnol.Biol.Med.6,634–641.doi:
10.1016/j.nano.2010.04.005
Frontiers inChemistry | ChemicalEngineering August2014 |Volume2 |Article69 | 46
Cancer Nanotheranostics
What Have We Learnd So Far?
- Title
- Cancer Nanotheranostics
- Subtitle
- What Have We Learnd So Far?
- Authors
- João Conde
- Pedro Viana Baptista
- Jesús M. De La Fuente
- Furong Tian
- Editor
- Frontiers in Chemistry
- Date
- 2016
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-2-88919-776-7
- Size
- 21.0 x 27.7 cm
- Pages
- 132
- Keywords
- Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
- Categories
- Naturwissenschaften Chemie