Page - 91 - in Cancer Nanotheranostics - What Have We Learnd So Far?
Image of the Page - 91 -
Text of the Page - 91 -
Conniotet al. Nanocarriers for immunecell targetingand tracking
Nanjwade, B. K., Bechra, H.M., Derkar, G. K., Manvi, F. V., andNanjwade, V.
K. (2009). Dendrimers: emerging polymers for drug-delivery systems. Eur. J.
Pharm.Sci.38,185–196.doi:10.1016/j.ejps.2009.07.008
Naumova, A. V., Modo, M., Moore, A., Murry, C. E., and Frank, J. A. (2014).
Clinical imaging in regenerativemedicine.Nat. Biotechnol. 32, 804–818. doi:
10.1038/nbt.2993
Nicolas, J., Mura, S., Brambilla, D., Mackiewicz, N., and Couvreur, P. (2013).
Design, functionalization strategies and biomedical applications of targeted
biodegradable/biocompatible polymer-based nanocarriers for drug delivery.
Chem.Soc.Rev.42,1147–1235.doi:10.1039/c2cs35265f
Niederhafner, P., Reinis,M., Sebestik, J., and Jezek, J. (2008). Glycopeptide den-
drimers, part III: a review. Use of glycopeptide dendrimers in immunother-
apy and diagnosis of cancer and viral diseases. J. Pept. Sci. 14, 556–587. doi:
10.1002/psc.1011
Niino,D.,Komohara,Y.,Murayama,T.,Aoki,R.,Kimura,Y.,Hashikawa,K., et al.
(2010). Ratio of M2macrophage expression is closely associated with poor
prognosis for Angioimmunoblastic T-cell lymphoma (AITL). Pathol. Int. 60,
278–283.doi:10.1111/j.1440-1827.2010.02514.x
Oble,D.A.,Loewe,R.,Yu,P.,andMihm,M.C.Jr. (2009).FocusonTILs:prognos-
tic significanceof tumor infiltrating lymphocytes inhumanmelanoma.Cancer
Immun.9,3.
Ocampo-Garcia, B., Ferro-Flores, G., Morales-Avila, E., and Ramirez Fde,
M. (2011). Kit for preparation of multimeric receptor-specific (9)(9)mTc-
radiopharmaceuticals based on gold nanoparticles.Nucl. Med. Commun. 32,
1095–1104.doi:10.1097/MNM.0b013e32834acf33
Osaki, M., Kase, S., Adachi, K., Takeda, A., Hashimoto, K., and Ito, H. (2004).
Inhibition of the PI3K-Akt signaling pathway enhances the sensitivity of Fas-
mediated apoptosis in human gastric carcinoma cell line,MKN-45. J. Cancer
Res.Clin.Oncol.130,8–14.doi:10.1007/s00432-003-0505-z
Ostrand-Rosenberg, S. (2004).Animalmodels of tumor immunity, immunother-
apyandcancer vaccines.Curr.Opin. Immunol.16, 143–150.doi: 10.1016/j.coi.
2004.01.003
Oyama, T., Ran, S., Ishida, T., Nadaf, S., Kerr, L., Carbone, D. P., et al. (1998).
Vascularendothelialgrowthfactoraffectsdendriticcellmaturationthroughthe
inhibitionofnuclear factor-kappaBactivation inhemopoieticprogenitorcells.
J. Immunol.160,1224–1232.
Palucka,K., andBanchereau, J. (2012).Cancer immunotherapyviadendritic cells.
Nat.Rev.Cancer12,265–277.doi:10.1038/nrc3258
Pan,J.,andFeng,S.S. (2008).Targeteddeliveryofpaclitaxelusingfolate-decorated
poly(lactide)-vitamin ETPGSnanoparticles.Biomaterials 29, 2663–2672. doi:
10.1016/j.biomaterials.2008.02.020
Panyam, J., and Labhasetwar, V. (2003). Biodegradable nanoparticles for drug
and gene delivery to cells and tissue.Adv. Drug Deliv. Rev. 55, 329–347. doi:
10.1016/S0169-409X(02)00228-4
Park, J.H.,VonMaltzahn,G.,Zhang, L.,Derfus,A.M., Simberg,D.,Harris, T. J.,
etal. (2009).Systematicsurfaceengineeringofmagneticnanowormsfor invivo
tumortargeting.Small5,694–700.doi:10.1002/smll.200801789
Partlow,K.C.,Chen,J.,Brant,J.A.,Neubauer,A.M.,Meyerrose,T.E.,Creer,M.H.,
etal. (2007).19Fmagnetic resonance imaging for stem/progenitorcell tracking
withmultiple unique perfluorocarbonnanobeacons.FASEB J. 21, 1647–1654.
doi:10.1096/fj.06-6505com
Patel, S. K., Zhang, Y., Pollock, J. A., and Janjic, J. M. (2013). Cyclooxgenase-2
inhibiting perfluoropoly (ethylene glycol) ether theranostic nanoemulsions-
invitro study.PLoSONE8:e55802.doi:10.1371/journal.pone.0055802
Pedroza-Gonzalez,A.,Xu,K.,Wu,T.C.,Aspord,C., Tindle, S.,Marches, F., et al.
(2011).Thymic stromal lymphopoietin fostershumanbreast tumorgrowthby
promoting type 2 inflammation. J. Exp.Med. 208, 479–490. doi: 10.1084/jem.
20102131
Peer,D.,Karp,J.M.,Hong,S.,Farokhzad,O.C.,Margalit,R.,andLanger,R.(2007).
Nanocarriers as an emergingplatform for cancer therapy.Nat.Nanotechnol.2,
751–760.doi:10.1038/nnano.2007.387
Pejawar-Gaddy, S., Rajawat, Y., Hilioti, Z., Xue, J., Gaddy, D. F., Finn, O. J.,
et al. (2010). Generation of a tumor vaccine candidate based on conjugation
of a MUC1 peptide to polyionic papillomavirus virus-like particles. Cancer
Immunol. Immunother.59,1685–1696.doi:10.1007/s00262-010-0895-0
Pelkmans,L.,andHelenius,A.(2002).Endocytosisviacaveolae.Traffic3,311–320.
doi:10.1034/j.1600-0854.2002.30501.x
Peng, G.,Wang,H. Y., Peng,W., Kiniwa, Y., Seo, K.H., andWang, R. F. (2007).
Tumor-infiltrating gammadelta T cells suppress T and dendritic cell function via mechanisms controlled by a unique toll-like receptor signaling pathway.
Immunity27,334–348.doi:10.1016/j.immuni.2007.05.020
Poulose, A. C., Veeranarayanan, S., Mohamed,M. S., Raveendran, S., Nagaoka,
Y.,Yoshida,Y., et al. (2012).PEGcoatedbiocompatible cadmiumchalcogenide
quantumdots for targeted imagingofcancercells. J.Fluoresc.22,931–944.doi:
10.1007/s10895-011-1032-y
Progatzky, F., Dallman, M. J., and Lo Celso, C. (2013). From seeing to believ-
ing: labelling strategies for in vivo cell-tracking experiments. Interface Focus 3,
20130001.doi:10.1098/rsfs.2013.0001
Prokop, A., and Davidson, J. M. (2008). Nanovehicular intracellular delivery
systems. J.Pharm.Sci.97,3518–3590.doi:10.1002/jps.21270
Psimadas,D.,Baldi,G.,Ravagli,C.,Bouziotis, P.,Xanthopoulos, S., Franchini,M.
C.,etal. (2012).Preliminaryevaluationofa99mTclabeledhybridnanoparticle
bearing a cobalt ferrite core: in vivobiodistribution. J. Biomed.Nanotechnol.8,
575–585.doi:10.1166/jbn.2012.1412
Raaijmakers, M. I., Rozati, S., Goldinger, S. M., Widmer, D. S., Dummer, R.,
andLevesque,M.P. (2013).Melanoma immunotherapy: historical precedents,
recentsuccessesandfutureprospects. Immunotherapy5,169–182.doi:10.2217/
imt.12.162
Rabin,O.,ManuelPerez, J.,Grimm,J.,Wojtkiewicz,G., andWeissleder,R. (2006).
An X-ray computed tomography imaging agent based on long-circulating
bismuthsulphidenanoparticles.Nat.Mater.5,118–122.doi:10.1038/nmat1571
Radford,K. J., andCaminschi, I. (2013).Newgenerationofdendriticcell vaccines.
Hum.Vaccin. Immunother.9,259–264.
Rahir, G., and Moser, M. (2012). Tumor microenvironment and lymphocyte
infiltration.Cancer Immunol. Immunother. 61, 751–759. doi: 10.1007/s00262-
012-1253-1
Rawat,M.,Singh,D.,Saraf,S.,andSaraf,S.(2006).Nanocarriers:promisingvehicle
forbioactivedrugs.Biol.Pharm.Bull.29,1790–1798.doi:10.1248/bpb.29.1790
Reddy,G.R., Bhojani,M. S.,McConville, P.,Moody, J.,Moffat, B.A.,Hall,D. E.,
etal. (2006).Vasculartargetednanoparticles forimagingandtreatmentofbrain
tumors.Clin.CancerRes.12,6677–6686.doi:10.1158/1078-0432.CCR-06-0946
Reimer, P., and Balzer, T. (2003). Ferucarbotran (Resovist): a new clinically
approvedRES-specific contrast agent for contrast-enhancedMRI of the liver:
properties, clinical development, andapplications.Eur.Radiol.13, 1266–1276.
doi:10.1007/s00330-002-1721-7
Riehemann,K.,Schneider,S.W.,Luger,T.A.,Godin,B.,Ferrari,M.,andFuchs,H.
(2009).Nanomedicine–challenge andperspectives.Angew.Chem. Int. EdEngl.
48,872–897.doi:10.1002/anie.200802585
Rizvi, S. B., Rouhi, S., Taniguchi, S., Yang, S. Y., Green,M., Keshtgar,M., et al.
(2014). Near-infrared quantum dots for HER2 localization and imaging of
cancercells. Int. J.Nanomedicine9,1323–1337.doi:10.2147/IJN.S51535
Rohani, R., De Chickera, S. N., Willert, C., Chen, Y., Dekaban, G. A., and
Foster, P. J. (2011). In vivo cellular MRI of dendritic cell migration using
micrometer-sized ironoxide (MPIO)particles.Mol. ImagingBiol.13,679–694.
doi:10.1007/s11307-010-0403-0
Roitt, I.M.,andDelves,P.J. (2001).Roitt’sEssential Immunology.Oxford:Blackwell
Science.
Romani,N.,Gruner, S.,Brang,D.,Kampgen,E.,Lenz,A.,Trockenbacher,B., et al.
(1994). Proliferating dendritic cell progenitors in human blood. J. Exp.Med.
180,83–93.
Rosenberg, S. A. (2001). Progress in human tumour immunology and
immunotherapy.Nature411,380–384.doi:10.1038/35077246
Rosenberg, S. A., Yang, J. C., and Restifo, N. P. (2004). Cancer immunotherapy:
movingbeyondcurrentvaccines.Nat.Med.10,909–915.doi:10.1038/nm1100
Rosenberg, S.A.,Yang, J.C., Sherry,R.M.,Kammula,U. S.,Hughes,M.S., Phan,
G.Q., et al. (2011).Durable complete responses inheavily pretreatedpatients
withmetastaticmelanomausingT-cell transfer immunotherapy.Clin. Cancer
Res.17,4550–4557.doi:10.1158/1078-0432.CCR-11-0116
Ruan,G.,Agrawal,A.,Marcus,A.I.,andNie,S.(2007). Imagingandtrackingoftat
peptide-conjugated quantumdots in living cells: new insights into nanoparti-
cleuptake, intracellular transport, andvesicle shedding. J.Am.Chem.Soc.129,
14759–14766.doi:10.1021/ja074936k
Sahoo, S. K., and Labhasetwar, V. (2003). Nanotech approaches to drug delivery
and imaging.DrugDiscov. Today 8, 1112–1120. doi: 10.1016/S1359-6446(03)
02903-9
Santra, S., Dutta, D., Walter, G. A., and Moudgil, B. M. (2005). Fluorescent
nanoparticleprobes forcancer imaging.Technol.CancerRes.Treat.4,593–602.
doi:10.1177/153303460500400603
Frontiers inChemistry | ChemicalEngineering November2014 |Volume2 |Article105 | 91
Cancer Nanotheranostics
What Have We Learnd So Far?
- Title
- Cancer Nanotheranostics
- Subtitle
- What Have We Learnd So Far?
- Authors
- João Conde
- Pedro Viana Baptista
- Jesús M. De La Fuente
- Furong Tian
- Editor
- Frontiers in Chemistry
- Date
- 2016
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-2-88919-776-7
- Size
- 21.0 x 27.7 cm
- Pages
- 132
- Keywords
- Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
- Categories
- Naturwissenschaften Chemie