Page - 93 - in Cancer Nanotheranostics - What Have We Learnd So Far?
Image of the Page - 93 -
Text of the Page - 93 -
Conniotet al. Nanocarriers for immunecell targetingand tracking
Torchilin, V. P. (2001). Structure and design of polymeric surfactant-based
drug delivery systems. J. Control. Release 73, 137–172. doi: 10.1016/S0168-
3659(01)00299-1
Torchilin, V. (2011). Tumor delivery ofmacromolecular drugs based on the EPR
effect.Adv.DrugDeliv.Rev.63,131–135.doi:10.1016/j.addr.2010.03.011
Torchilin,V.P.(2008).Cellpenetratingpeptide-modifiedpharmaceuticalnanocar-
riers for intracellular drug and gene delivery. Biopolymers 90, 604–610. doi:
10.1002/bip.20989
Toulza, F., Nosaka, K., Tanaka, Y., Schioppa, T., Balkwill, F., Taylor, G. P., et al.
(2010).HumanT-lymphotropicvirus type1-inducedCCchemokine ligand22
maintainsahighfrequencyoffunctionalFoxP3+regulatoryTcells.J. Immunol.
185,183–189.doi:10.4049/jimmunol.0903846
Tsushima,H.,Kawata,S.,Tamura,S., Ito,N.,Shirai,Y.,Kiso,S., et al. (1996).High
levels of transforming growth factor beta 1 in patientswith colorectal cancer:
associationwithdiseaseprogression.Gastroenterology110,375–382.
Unger,W.W.,andVanKooyk,Y.(2011).“Dressedforsuccess”C-type lectinrecep-
tors for the delivery of glyco-vaccines to dendritic cells.Curr.Opin. Immunol.
23,131–137.doi:10.1016/j.coi.2010.11.011
U’ren,L.,Kedl,R.,andDow,S.(2006).Vaccinationwithliposome–DNAcomplexes
elicits enhanced antitumor immunity.CancerGene. Ther. 13, 1033–1044. doi:
10.1038/sj.cgt.7700982
Uyttenhove, C., Godfraind, C., Lethe, B., Amar-Costesec, A., Renauld, J. C.,
Gajewski,T.F.,etal.(1997).TheexpressionofmousegeneP1Aintestisdoesnot
preventsafe inductionofcytolyticTcellsagainstaP1A-encodedtumorantigen.
Int. J.Cancer70,349–356.
Vacchelli, E., Martins, I., Eggermont, A., Fridman, W. H., Galon, J., Sautes-
Fridman, C., et al. (2012). Trial watch: peptide vaccines in cancer therapy.
Oncoimmunology1,1557–1576.doi:10.4161/onci.22428
Van Broekhoven, C. L., Parish, C. R., Demangel, C., Britton, W. J., and Altin,
J. G. (2004). Targeting dendritic cells with antigen-containing liposomes: a
highlyeffectiveprocedure for inductionofantitumor immunityand for tumor
immunotherapy.CancerRes.64, 4357–4365. doi: 10.1158/0008-5472.CAN-04-
0138
Van Kooyk, Y. (2008). C-type lectins on dendritic cells: keymodulators for the
induction of immune responses. Biochem. Soc. Trans. 36, 1478–1481. doi:
10.1042/BST0361478
Vesely,M.D.,Kershaw,M.H., Schreiber, R.D., and Smyth,M. J. (2011).Natural
innateandadaptive immunitytocancer.Annu.Rev. Immunol.29,235–271.doi:
10.1146/annurev-immunol-031210-101324
Vonderheide,R.H.,Bajor,D.L.,Winograd,R.,Evans,R.A.,Bayne,L.J.,andBeatty,
G. L. (2013). CD40 immunotherapy for pancreatic cancer. Cancer Immunol.
Immunother.62,949–954.doi:10.1007/s00262-013-1427-5
Voura, E. B., Jaiswal, J. K., Mattoussi, H., and Simon, S. M. (2004). Tracking
metastatic tumor cell extravasation with quantum dot nanocrystals and
fluorescence emission-scanning microscopy. Nat. Med. 10, 993–998. doi:
10.1038/nm1096
Vu-Quang, H., Muthiah, M., Lee, H. J., Kim, Y. K., Rhee, J. H., Lee, J. H.,
et al. (2012). Immune cell-specific delivery of beta-glucan-coated iron oxide
nanoparticles fordiagnosinglivermetastasisbyMRimaging.Carbohydr.Polym.
87,1159–1168.doi:10.1016/j.carbpol.2011.08.091
Wang, H. X., Xiong, M. H., Wang, Y. C., Zhu, J., and Wang, J. (2013a).
N-acetylgalactosamine functionalized mixed micellar nanoparticles for tar-
geted delivery of siRNA to liver. J. Control. Release 166, 106–114. doi:
10.1016/j.jconrel.2012.12.017
Wang,K.,He, X., Yang, X., and Shi,H. (2013b). Functionalized silica nanoparti-
cles:aplatformforfluorescence imagingat thecell andsmallanimal levels.Acc.
Chem.Res.46,1367–1376.doi:10.1021/ar3001525
Wang,X.,Xing,X.,Zhang,B., Liu, F.,Cheng,Y., andShi,D. (2014). Surface engi-
neeredantifoulingoptomagneticSPIONsforbimodal targeted imagingofpan-
creaticcancercells. Int. J.Nanomedicine9,1601–1615.doi:10.2147/IJN.S58334
Wang, Y. X., Hussain, S.M., and Krestin, G. P. (2001). Superparamagnetic iron
oxide contrast agents: physicochemical characteristics and applications inMR
imaging.Eur.Radiol.11,2319–2331.doi:10.1007/s003300100908
Watkins, S.K.,Zhu,Z.,Riboldi,E., Shafer-Weaver,K.A., Stagliano,K.E., Sklavos,
M.M.,etal. (2011).FOXO3programstumor-associatedDCstobecometolero-
genic inhumanandmurineprostatecancer. J.Clin. Invest.121,1361–1372.doi:
10.1172/JCI44325
Weng,K.C.,Noble,C.O.,Papahadjopoulos-Sternberg,B.,Chen,F.F.,Drummond,
D. C., Kirpotin, D. B., et al. (2008). Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes
invitroand invivo.NanoLett.8,2851–2857.doi:10.1021/nl801488u
Wesch, D., Peters, C., Oberg, H. H., Pietschmann, K., and Kabelitz, D. (2011).
Modulationof gammadeltaTcell responsesbyTLR ligands.Cell.Mol. Life Sci.
68,2357–2370.doi:10.1007/s00018-011-0699-1
Wilson, J. T., Keller, S., Manganiello, M. J., Cheng, C., Lee, C. C., Opara, C.,
et al. (2013). pH-Responsive nanoparticle vaccines for dual-delivery of anti-
gens and immunostimulatory oligonucleotides.ACSNano 7, 3912–3925. doi:
10.1021/nn305466z
Wong, A. D., Dewit, M. A., and Gillies, E. R. (2012). Amplified release
through the stimulus triggereddegradationof self-immolativeoligomers, den-
drimers, and linear polymers. Adv. Drug Deliv. Rev. 64, 1031–1045. doi:
10.1016/j.addr.2011.09.012
Wu, D., Gao, Y., Qi, Y., Chen, L., Ma, Y., and Li, Y. (2014). Peptide-based can-
cer therapy:opportunityandchallenge.CancerLett.351,13–22.doi: 10.1016/j.
canlet.2014.05.002
Xiang, S.D., Scholzen,A.,Minigo,G.,David,C.,Apostolopoulos,V.,Mottram,P.
L., etal. (2006).Pathogenrecognitionanddevelopmentofparticulatevaccines:
does sizematter?Methods40,1–9.doi:10.1016/j.ymeth.2006.05.016
Xie, H., Diagaradjane, P., Deorukhkar, A. A., Goins, B., Bao, A., Phillips,W. T.,
et al. (2011). Integrin alphavbeta3-targeted gold nanoshells augment tumor
vasculature-specific imagingand therapy. Int. J.Nanomedicine6,259–269.doi:
10.2147/IJN.S15479
Xie, J.,Chen,K.,Huang, J., Lee, S.,Wang, J.,Gao, J., et al. (2010).PET/NIRF/MRI
triple functional iron oxide nanoparticles. Biomaterials 31, 3016–3022. doi:
10.1016/j.biomaterials.2010.01.010
Xu, Z.,Wang, Y., Zhang, L., andHuang, L. (2014).Nanoparticle-delivered trans-
forming growth factor-beta siRNA enhances vaccination against advanced
melanoma bymodifying tumormicroenvironment.ACSNano 8, 3636–3645.
doi:10.1021/nn500216y
Yaghoubi, S. S., Jensen,M.C., Satyamurthy,N.,Budhiraja, S.,Paik,D.,Czernin, J.,
et al. (2009). Noninvasive detection of therapeutic cytolytic T cells with 18F-
FHBG PET in a patient with glioma.Nat. Clin. Pract. Oncol. 6, 53–58. doi:
10.1038/ncponc1278
Yang, J., Lee, C. H., Ko, H. J., Suh, J. S., Yoon, H. G., Lee, K., et al. (2007).
Multifunctional magneto-polymeric nanohybrids for targeted detection and
synergistic therapeutic effects onbreast cancer.Angew.Chem. Int. Ed.Engl.46,
8836–8839.doi:10.1002/anie.200703554
Yang,W., Cheng, Y., Xu, T., Wang, X., andWen, L. P. (2009). Targeting cancer
cells with biotin-dendrimer conjugates. Eur. J.Med. Chem. 44, 862–868. doi:
10.1016/j.ejmech.2008.04.021
Yoo, H. S., and Park, T. G. (2004). Folate receptor targeted biodegrad-
able polymeric doxorubicin micelles. J. Control. Release 96, 273–283. doi:
10.1016/j.jconrel.2004.02.003
Yoshikawa, T., Okada, N., Oda, A., Matsuo, K., Matsuo, K., Kayamuro, H.,
et al. (2008).Nanoparticles built by self-assemblyof amphiphilic gamma-PGA
can deliver antigens to antigen-presenting cells with high efficiency: a new
tumor-vaccine carrier for eliciting effectorT cells.Vaccine26, 1303–1313. doi:
10.1016/j.vaccine.2007.12.037
Yu, M. K., Park, J., and Jon, S. (2012). Targeting strategies for multifunc-
tional nanoparticles in cancer imaging and therapy.Theranostics 2, 3–44. doi:
10.7150/thno.3463
Yu,X.,Chen,L., Li,K., Li,Y.,Xiao, S., Luo,X., et al. (2007). Immunofluorescence
detectionwithquantumdotbioconjugatesforhepatoma invivo.J.Biomed.Opt.
12,014008.doi:10.1117/1.2437744
Yuan, F., Dellian, M., Fukumura, D., Leunig, M., Berk, D. A., Torchilin, V. P.,
etal. (1995).Vascularpermeability inahumantumorxenograft:molecularsize
dependenceandcutoff size.CancerRes.55,3752–3756.
Yue,Z.G.,Wei,W., Lv, P. P., Yue,H.,Wang, L.Y., Su,Z.G., et al. (2011). Surface
charge affects cellular uptake and intracellular trafficking of chitosan-based
nanoparticles.Biomacromolecules12,2440–2446.doi:10.1021/bm101482r
Zavaleta, C., De La Zerda, A., Liu, Z., Keren, S., Cheng, Z., Schipper, M.,
et al. (2008). Noninvasive Raman spectroscopy in livingmice for evaluation
of tumor targeting with carbon nanotubes. Nano Lett. 8, 2800–2805. doi:
10.1021/nl801362a
Zhang, L., Zhou, H., Belzile, O., Thorpe, P., and Zhao, D. (2014).
Phosphatidylserine-targeted bimodal liposomal nanoparticles for in vivo
imaging of breast cancer in mice. J. Control. Release 183, 114–123. doi:
10.1016/j.jconrel.2014.03.043
Frontiers inChemistry | ChemicalEngineering November2014 |Volume2 |Article105 | 93
Cancer Nanotheranostics
What Have We Learnd So Far?
- Title
- Cancer Nanotheranostics
- Subtitle
- What Have We Learnd So Far?
- Authors
- JoĂŁo Conde
- Pedro Viana Baptista
- JesĂşs M. De La Fuente
- Furong Tian
- Editor
- Frontiers in Chemistry
- Date
- 2016
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-2-88919-776-7
- Size
- 21.0 x 27.7 cm
- Pages
- 132
- Keywords
- Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
- Categories
- Naturwissenschaften Chemie