Page - 100 - in Cancer Nanotheranostics - What Have We Learnd So Far?
Image of the Page - 100 -
Text of the Page - 100 -
Pearsonetal. Nanoparticlebiomoleculecorona
Hubbell, J.A.,andLanger,R.(2013).Translatingmaterialsdesigntotheclinic.Nat.
Mater.12,963–966.doi:10.1038/nmat3788
Karlsson, M., MĂĄrtensson, L.-G., Jonsson, B.-H., and Carlsson, U. (2000).
Adsorption of human carbonic anhydrase II variants to silica nanoparticles
occur stepwise: binding is followedby successive conformational changes to a
molten-globule-like state.Langmuir16,8470–8479.doi:10.1021/la0002738
Karmali, P. P., and Simberg,D. (2011). Interactions of nanoparticleswith plasma
proteins: implicationonclearanceand toxicityofdrugdelivery systems.Expert
Opin.DrugDeliv.8,343–357.doi:10.1517/17425247.2011.554818
Lindman, S., Lynch, I., Thulin, E., Nilsson, H., Dawson, K. A., and Linse, S.
(2007). Systematic investigation of the thermodynamics of HSA adsorption
to N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles.
Effectsofparticle sizeandhydrophobicity.NanoLett.7,914–920.doi:10.1021/
nl062743+
Linse, S., Cabaleiro-Lago,C., Xue,W. F., Lynch, I., Lindman, S., Thulin, E., et al.
(2007).Nucleationofproteinfibrillationbynanoparticles.Proc.Natl.Acad.Sci.
U.S.A.104,8691–8696.doi:10.1073/pnas.0701250104
Lundqvist,M.,Stigler,J.,Elia,G.,Lynch,I.,Cedervall,T.,andDawson,K.A.(2008).
Nanoparticle size and surface properties determine the protein corona with
possible implications for biological impacts.Proc. Natl. Acad. Sci. U.S.A. 105,
14265–14270.doi:10.1073/pnas.0805135105
Lynch, I.,Dawson,K.A., andLinse, S. (2006).Detecting cryptic epitopes created
bynanoparticles.Sci.STKE2006:pe14.doi:10.1126/stke.3272006pe14
Martin, S.,Manuela, S.-B.,Hakan, S., Shinji, T., Alexander,W., Carsten, S., et al.
(2013). Serumprotein identification andquantificationof the corona of 5, 15
and 80nmgold nanoparticles.Nanotechnology 24:265103. doi: 10.1088/0957-
4484/24/26/265103
Milani, S., Baldelli Bombelli, F., Pitek,A. S.,Dawson,K.A., andRädler, J. (2012).
Reversible versus irreversible binding of transferrin to polystyrene nanoparti-
cles: softandhardcorona.ACSNano6,2532–2541.doi:10.1021/nn204951s
Mirshafiee, V., Mahmoudi, M., Lou, K., Cheng, J., and Kraft, M. L. (2013).
Proteincorona significantly reduces active targetingyield.Chem.Commun.49,
2557–2559.doi:10.1039/c3cc37307j
Monopoli,M., Pitek,A., Lynch, I., andDawson,K. (2013). “Formationandchar-
acterizationof thenanoparticle–protein corona,” inNanomaterial Interfaces in
Biology, edsP.BergeseandK.Hamad-Schifferli (NewYork,NY:HumanaPress),
137–155.doi:10.1007/978-1-62703-462-3_11
Monopoli,M. P., Aberg, C., Salvati, A., andDawson, K. A. (2012). Biomolecular
coronas provide the biological identity of nanosized materials. Nat.
Nanotechnol.7,779–786.doi:10.1038/nnano.2012.207
Mortensen,N. P.,Hurst, G. B.,Wang,W., Foster, C.M.,Nallathamby, P.D., and
Retterer, S. T. (2013). Dynamic development of the protein corona on silica
nanoparticles: composition and role in toxicity.Nanoscale 5, 6372–6380. doi:
10.1039/c3nr33280b
Mortimer,G.M., Butcher,N. J.,Musumeci, A.W.,Deng, Z. J.,Martin,D. J., and
Minchin, R. F. (2014). Cryptic epitopes of albumin determinemononuclear
phagocyte system clearance of nanomaterials. ACS Nano 8, 3357–3366. doi:
10.1021/nn405830g
Nel, A. E., Madler, L., Velegol, D., Xia, T., Hoek, E. M. V., Somasundaran, P.,
et al. (2009). Understanding biophysicochemical interactions at the nano-bio
interface.Nat.Mater.8,543–557.doi:10.1038/nmat2442
Owens, D. E. III., and Peppas, N. A. (2006). Opsonization, biodistribution, and
pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307, 93–102. doi:
10.1016/j.ijpharm.2005.10.010
Paula, A. J., Araujo Junior, R. T.,Martinez, D. S., Paredes-Gamero, E. J., Nader,
H. B., Duran, N., et al. (2013). Influence of protein corona on the transport
ofmolecules into cells bymesoporous silica nanoparticles.ACS Appl. Mater.
Interfaces5,8387–8393.doi:10.1021/am4014693
Pearson,R.M.,Hsu,H.-J.,Bugno,J.,andHong,S.(2014).Understandingnano-bio
interactions to improvenanocarriers fordrugdelivery.MRSBull.39, 227–237.
doi:10.1557/mrs.2014.9
Pearson,R.M.,Sunoqrot,S.,Hsu,H.-J.,Bae, J.W.,andHong,S. (2012).Dendritic
nanoparticles: thenextgenerationofnanocarriers?Ther.Deliv.3,941–959.doi:
10.4155/tde.12.76
Peer,D.,Karp,J.M.,Hong,S.,Farokhzad,O.C.,Margalit,R.,andLanger,R.(2007).
Nanocarriers as an emergingplatform for cancer therapy.Nat.Nanotechnol.2,
751–760.doi:10.1038/nnano.2007.387
Peng, Q., Zhang, S., Yang, Q., Zhang, T., Wei, X.-Q., Jiang, L.,
et al. (2013). Preformed albumin corona, a protective coating for nanoparticles based drug delivery system. Biomaterials 34, 8521–8530.
doi:10.1016/j.biomaterials.2013.07.102
Perry, J. L., Reuter, K.G., Kai,M. P.,Herlihy, K. P., Jones, S.W., Luft, J. C., et al.
(2012).PEGylatedPRINTnanoparticles: the impactofPEGdensityonprotein
binding,macrophageassociation,biodistribution,andpharmacokinetics.Nano
Lett.12,5304–5310.doi:10.1021/nl302638g
Romberg, B., Hennink, W. E., and Storm, G. (2008). Sheddable coatings for
long-circulatingnanoparticles.Pharm.Res.25,55–71.doi:10.1007/s11095-007-
9348-7
Sacchetti, C., Motamedchaboki, K., Magrini, A., Palmieri, G., Mattei, M.,
Bernardini, S., et al. (2013). Surface polyethylene glycol conformation influ-
ences theprotein coronaofpolyethylene glycol-modified single-walled carbon
nanotubes: potential implications on biological performance. ACS Nano 7,
1974–1989.doi:10.1021/nn400409h
Sakulkhu,U.,Mahmoudi,M.,Maurizi,L.,Salaklang, J., andHofmann,H.(2014a).
Protein corona composition of superparamagnetic iron oxide nanoparticles
with various physico-chemical properties and coatings. Sci. Rep. 4:5020. doi:
10.1038/srep05020
Sakulkhu,U.,Maurizi, L.,Mahmoudi,M.,Motazacker,M., Vries,M., Gramoun,
A., et al. (2014b). Ex situ evaluation of the composition of protein corona of
intravenously injected superparamagnetic nanoparticles in rats.Nanoscale 6,
11439–11450.doi:10.1039/C4NR02793K
Salvati, A., Pitek, A. S.,Monopoli,M. P., Prapainop, K., Bombelli, F. B., Hristov,
D. R., et al. (2013). Transferrin-functionalized nanoparticles lose their tar-
geting capabilities when a biomolecule corona adsorbs on the surface.Nat.
Nanotechnol.8,137–143.doi:10.1038/nnano.2012.237
Saptarshi, S.R.,Duschl,A., andLopata,A.L. (2013). Interactionofnanoparticles
with proteins: relation to bio-reactivity of the nanoparticle. J.Nanobiotechnol.
11:26.doi:10.1186/1477-3155-11-26
Shang,L.,Wang,Y., Jiang, J., andDong, S. (2007). pH-dependentprotein confor-
mational changes in albumin:goldnanoparticle bioconjugates: a spectroscopic
study.Langmuir23,2714–2721.doi:10.1021/la062064e
Shannahan, J.H., Lai,X.,Ke, P.C., Podila, R., Brown, J.M., andWitzmann, F.A.
(2013). Silver nanoparticle protein corona composition in cell culturemedia.
PLoSONE8:e74001.doi:10.1371/journal.pone.0074001
Sunoqrot, S., Bugno, J., Lantvit, D., Burdette, J. E., and Hong, S. (2014).
Prolonged blood circulation nd enhanced tumor accumulation of folate-
targeted dendrimer-polymer hybrid nanoparticles. J. Control. Release 191,
115–122.doi:10.1016/j.jconrel.2014.05.006
Tenzer, S., Docter, D., Kuharev, J., Musyanovych, A., Fetz, V., Hecht, R., et al.
(2013).Rapidformationofplasmaproteincoronacriticallyaffectsnanoparticle
pathophysiology.Nat.Nanotechnol.8,772–781.doi:10.1038/nnano.2013.181
van der Meel, R., Vehmeijer, L. J. C., Kok, R. J., Storm, G., and van Gaal,
E. V. B. (2013). Ligand-targeted particulate nanomedicines undergoing clin-
ical evaluation: current status. Adv. Drug Deliv. Rev. 65, 1284–1298. doi:
10.1016/j.addr.2013.08.012
Vroman, L., Adams, A. L., Fischer, G. C., andMunoz, P. C. (1980). Interaction
of highmolecular weight kininogen, factor XII, and fibrinogen in plasma at
interfaces.Blood55,156–159.
Walkey, C. D., Olsen, J. B., Guo, H., Emili, A., and Chan, W. C. W. (2011).
Nanoparticle size and surface chemistry determine serum protein adsorp-
tion and macrophage uptake. J. Am. Chem. Soc. 134, 2139–2147. doi:
10.1021/ja2084338
Walkey, C.D.,Olsen, J. B., Song, F., Liu, R., Guo,H.,Olsen,D.W., et al. (2014).
Proteincoronafingerprintingpredicts thecellular interactionofgoldandsilver
nanoparticles.ACSNano8,2439–2455.doi:10.1021/nn406018q
Wolfram, J., Suri, K., Yang, Y., Shen, J., Celia, C., Fresta, M., et al. (2014b).
Shrinkage of pegylated and non-pegylated liposomes in serum.Colloids Surf.
BBiointerfaces114,294–300.doi:10.1016/j.colsurfb.2013.10.009
Wolfram, J., Yang, Y., Shen, J., Moten, A., Chen, C., Shen, H., et al. (2014a).
The nano-plasma interface: implications of the protein corona.Colloids Surf.
BBiointerfaces.doi:10.1016/j.colsurfb.2014.02.035. [Epubaheadofprint].
Yan, Y., Gause, K. T., Kamphuis,M.M. J., Ang, C.-S., O’Brien-Simpson, N.M.,
Lenzo, J. C., et al. (2013).Differential roles of the protein corona in the cellu-
laruptakeofnanoporouspolymerparticles bymonocyte andmacrophage cell
lines.ACSNano7,10960–10970.doi:10.1021/nn404481f
Zhang,L.,Gu,F.X.,Chan, J.M.,Wang,A.Z., Langer,R. S., andFarokhzad,O.C.
(2008).Nanoparticles inmedicine: therapeuticapplicationsanddevelopments.
Clin.Pharmacol.Ther.83,761–769.doi:10.1038/sj.clpt.6100400
Frontiers inChemistry | ChemicalEngineering November2014 |Volume2 |Article108 | 100
Cancer Nanotheranostics
What Have We Learnd So Far?
- Title
- Cancer Nanotheranostics
- Subtitle
- What Have We Learnd So Far?
- Authors
- JoĂŁo Conde
- Pedro Viana Baptista
- JesĂşs M. De La Fuente
- Furong Tian
- Editor
- Frontiers in Chemistry
- Date
- 2016
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-2-88919-776-7
- Size
- 21.0 x 27.7 cm
- Pages
- 132
- Keywords
- Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
- Categories
- Naturwissenschaften Chemie