Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Chemie
Cancer Nanotheranostics - What Have We Learnd So Far?
Page - 114 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 114 - in Cancer Nanotheranostics - What Have We Learnd So Far?

Image of the Page - 114 -

Image of the Page - 114 - in Cancer Nanotheranostics - What Have We Learnd So Far?

Text of the Page - 114 -

Alcantaraet al. Molecular imagingofbreast cancer peptide for in vivo imaging of breast tumor initiating cells (BTICs) byMRI (Sun et al., 2014). The development of new algorithms in contrast enhancedMRI is also enabling good discrimination of triple-negative cancers from non–triple- negative cancers, as well as between triple-negative cancers andbenignfibroadenomas(Agneretal.,2014).Thiscomputer assisteddiagnosisopensanewwindowforquickbreastcancer identificationandtherapeuticalmatch. 8. Combinationofmultidisciplinary inter-fielddata. It hasbeen recommendedthat imagingstudies (bothpreclinicalandclin- ical)would need to be coregisteredwith linked genomic and proteomic information in order to fully understand the bio- logical implications of the images registered (Segal et al., 2007; Lambin et al., 2012; Waterton and Pylkkanen, 2012). Currently, imagingstudiesareoftenseparatedfromtissuecol- lectiondue to a lackof appreciationof how the coordination couldbenefit. 9. Identification and evaluation of biomarkers with therapeutic responses.More extensive usage of orthotopic xenograft and transgenic murinemodels of primary andmetastatic breast cancer will demand robust preclinical imaging approaches. Trials thatmakeuseof these imageswill experience increased accuracy for novel agents, which in turn can speed up the development of successful treatments and the early cessation of those that shownopromise (publicationofnegative results has been recommendedbymany researchersAlcantara et al., 2010;Andersonetal.,2013).Thesepreclinical trialsmightalso leadtosequential andcombinationtreatmentregimens. As has been listed above, there are many new and emerging molecular imaging technologies that can benefit breast cancer patients. Other molecular imaging procedures under develop- mentoftencombineimagingsystemstoformhybridtechnologies thatimproveaccuracyandallowphysicianstoseehowcancermay be affectingother systems in thebody.Oneof themorepromis- ing research areas is in investigational PET imaging biomarkers, suchasfluorothymidine(FLT)andfluoroestrogen(FES).FLThas shownpromise for thedemonstrationof tumorproliferationand FES for the demonstration of estrogen receptors.Other exciting area of study is radioimmunotherapy, a form of treatment that targets cancer-killing radiationdirectly tocancer cells (outof the scopeof this review). CONCLUSIONS Thepast40yearshaveseenstunning improvements in theability of noninvasive imaging to characterize structures and functions. These strides have come from the progressive evolution of con- ventional imaging techniques, with relatively little impact from imaging targeted to specific molecular moieties. Although the basic science of molecular imaging continues to make impres- sive strides, the regulatory and commercial landscape is limiting to these investigational imagingagents. We anticipate that future needs will include the develop- ment of nanomaterials that are specific for immune cell subsets and can be used as imaging surrogates for nanotherapeutics. New in vivo imaging clinical tools for noninvasivemacrophage quantificationare thusultimatelyexpected tobecomerelevant to predictingpatients’ clinical outcome,defining treatmentoptions andmonitoringresponses to therapy. ACKNOWLEDGMENTS Financial support was provided by the Andalusian Ministry of Health (PI2013-0559 to Maria L. García-Martín). David Alcantara holds a Senior Marie Curie Fellowship (FP7- PEOPLE-2012-IEF, grant number 327151) from the European Commission. Manuel Pernia Leal thanks to the Andalusian Mobility Research Program for Nanomedicine (Fundación Pública Andaluza Progreso y Salud; Andalusian Ministry of Health) and the Talentia Postdoctoral Fellowship Program (grant agreement 267226; Andalusian Knowledge Agency; Andalusian RegionalMinistry of Economy, Innovation, Science andEmployment) for thePostdoctoralFellowships. REFERENCES Adamczyk, B., Tharmalingam, T., and Rudd, P. M. (2012). Glycans as cancer biomarkers. Biochim. Biophys. Acta 1820, 1347–1353. doi: 10.1016/j.bbagen. 2011.12.001 Agner,S.C.,Rosen,M.a.,englander,s., tomaszewski, j.e., feldman,m.d.,zhang,p., et al. (2014). computerized imageanalysis for identifying triple-negativebreast cancersanddifferentiatingthemfromothermolecularsubtypesofbreastcancer on dynamic contrast-enhancedMR images: a feasibility study.Radiology 272, 91–99.doi:10.1148/radiol.14121031 Agrawal,G.,Su,M.Y.,Nalcioglu,O.,Feig,S.A.,andChen,J.H.(2009).Significance of breast lesion descriptors in the ACR BI-RADSMRI lexicon. Cancer 115, 1363–1380.doi:10.1002/cncr.24156 Alakhras,M.,Bourne,R.,Rickard,M.,Ng,K.H.,Pietrzyk,M., andBrennan,P.C. (2013).Digital tomosynthesis:anewfuture forbreast imaging?Clin.Radiol.68, e225–236.doi:10.1016/j.crad.2013.01.007 Alcantara,D.,Blois, J., andCeacero,C. (2010).Editorial.AllResults J.Biol.1,1–3. AmericanCollegeofRadiology. (2003).Breast ImagingReportingandDataSystem Atlas.Reston,VA:BI-RADSAtlas. Anderson, G., Sprott, H., and Olsen, B. R. (2013). Opinion: publish negative results. Scientist. Available online at: http://www.the-scientist.com/?articles. view/articleNo/33968/title/Opinion--Publish-Negative-Results/ Barrett, B. J., Parfrey, P. S., McDonald, J. R., Hefferton, D. M., Reddy, E. R., and McManamon, P. J. (1992). Nonionic low-osmolality versus ionic high- osmolality contrast material for intravenous use in patients perceived to be at high risk: randomized trial. Radiology 183, 105–110. doi: 10.1148/radiol- ogy.183.1.1549654 Begley, J. K., Redpath, T.W., Bolan, P. J., andGilbert, F. J. (2012). In vivoproton magnetic resonance spectroscopy of breast cancer: a review of the literature. BreastCancerRes.14,207.doi:10.1186/bcr3132 Bolan, P. J. (2013). Magnetic resonance spectroscopy of the breast: current sta- tus.Magn.Reson. ImagingClin.N.Am.21, 625–639. doi: 10.1016/j.mric.2013. 04.008 Brozek-Pluska, B., Musial, J., Kordek, R., Bailo, E., Dieing, T., and Abramczyk, H. (2012). Raman spectroscopy and imaging: applications in human breast cancer diagnosis. Analyst 137, 3773–3780. doi: 10.1039/c2an1 6179f Burnside,E. S., Sickles,E.A.,Bassett, L.W.,Rubin,D.L., Lee,C.H., Ikeda,D.M., etal. (2009).TheACRBI-RADS®experience: learningfromhistory. J.Am.Coll. Radiol.6,851–860.doi:10.1016/j.jacr.2009.07.023 Caldarella, C., Treglia, G., and Giordano, A. (2014). Diagnostic perfor- mance of dedicated positron emission mammography using fluorine-18- fluorodeoxyglucose inwomenwith suspicious breast lesions: ameta-analysis. Clin.BreastCancer14,241–248.doi:10.1016/j.clbc.2013.12.004 Cheng, Z., Thorek, D. L., andTsourkas, A. (2010). Gadolinium-conjugated den- drimer nanoclusters as a tumor-targeted T1 magnetic resonance imaging contrast agent. Angew. Chem. Int. Ed. Engl. 49, 346–350. doi: 10.1002/anie. 200905133 Cho,H.,Alcantara,D.,Yuan,H.,Sheth,R.A.,Chen,H.H.,Huang,P.,etal. (2013). Fluorochrome-functionalized nanoparticles for imaging DNA in biological systems.ACSNano7,2032–2041.doi:10.1021/nn305962n Frontiers inChemistry | ChemicalEngineering December2014 |Volume2 |Article112 | 114
back to the  book Cancer Nanotheranostics - What Have We Learnd So Far?"
Cancer Nanotheranostics What Have We Learnd So Far?
Title
Cancer Nanotheranostics
Subtitle
What Have We Learnd So Far?
Authors
João Conde
Pedro Viana Baptista
Jesús M. De La Fuente
Furong Tian
Editor
Frontiers in Chemistry
Date
2016
Language
English
License
CC BY 4.0
ISBN
978-2-88919-776-7
Size
21.0 x 27.7 cm
Pages
132
Keywords
Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
Categories
Naturwissenschaften Chemie
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Cancer Nanotheranostics