Page - 114 - in Cancer Nanotheranostics - What Have We Learnd So Far?
Image of the Page - 114 -
Text of the Page - 114 -
Alcantaraet al. Molecular imagingofbreast cancer
peptide for in vivo imaging of breast tumor initiating cells
(BTICs) byMRI (Sun et al., 2014). The development of new
algorithms in contrast enhancedMRI is also enabling good
discrimination of triple-negative cancers from non–triple-
negative cancers, as well as between triple-negative cancers
andbenignfibroadenomas(Agneretal.,2014).Thiscomputer
assisteddiagnosisopensanewwindowforquickbreastcancer
identificationandtherapeuticalmatch.
8. Combinationofmultidisciplinary inter-fielddata. It hasbeen
recommendedthat imagingstudies (bothpreclinicalandclin-
ical)would need to be coregisteredwith linked genomic and
proteomic information in order to fully understand the bio-
logical implications of the images registered (Segal et al.,
2007; Lambin et al., 2012; Waterton and Pylkkanen, 2012).
Currently, imagingstudiesareoftenseparatedfromtissuecol-
lectiondue to a lackof appreciationof how the coordination
couldbenefit.
9. Identification and evaluation of biomarkers with therapeutic
responses.More extensive usage of orthotopic xenograft and
transgenic murinemodels of primary andmetastatic breast
cancer will demand robust preclinical imaging approaches.
Trials thatmakeuseof these imageswill experience increased
accuracy for novel agents, which in turn can speed up the
development of successful treatments and the early cessation
of those that shownopromise (publicationofnegative results
has been recommendedbymany researchersAlcantara et al.,
2010;Andersonetal.,2013).Thesepreclinical trialsmightalso
leadtosequential andcombinationtreatmentregimens.
As has been listed above, there are many new and emerging
molecular imaging technologies that can benefit breast cancer
patients. Other molecular imaging procedures under develop-
mentoftencombineimagingsystemstoformhybridtechnologies
thatimproveaccuracyandallowphysicianstoseehowcancermay
be affectingother systems in thebody.Oneof themorepromis-
ing research areas is in investigational PET imaging biomarkers,
suchasfluorothymidine(FLT)andfluoroestrogen(FES).FLThas
shownpromise for thedemonstrationof tumorproliferationand
FES for the demonstration of estrogen receptors.Other exciting
area of study is radioimmunotherapy, a form of treatment that
targets cancer-killing radiationdirectly tocancer cells (outof the
scopeof this review).
CONCLUSIONS
Thepast40yearshaveseenstunning improvements in theability
of noninvasive imaging to characterize structures and functions.
These strides have come from the progressive evolution of con-
ventional imaging techniques, with relatively little impact from
imaging targeted to specific molecular moieties. Although the
basic science of molecular imaging continues to make impres-
sive strides, the regulatory and commercial landscape is limiting
to these investigational imagingagents.
We anticipate that future needs will include the develop-
ment of nanomaterials that are specific for immune cell subsets
and can be used as imaging surrogates for nanotherapeutics.
New in vivo imaging clinical tools for noninvasivemacrophage
quantificationare thusultimatelyexpected tobecomerelevant to predictingpatients’ clinical outcome,defining treatmentoptions
andmonitoringresponses to therapy.
ACKNOWLEDGMENTS
Financial support was provided by the Andalusian Ministry
of Health (PI2013-0559 to Maria L. GarcÃa-MartÃn). David
Alcantara holds a Senior Marie Curie Fellowship (FP7-
PEOPLE-2012-IEF, grant number 327151) from the European
Commission. Manuel Pernia Leal thanks to the Andalusian
Mobility Research Program for Nanomedicine (Fundación
Pública Andaluza Progreso y Salud; Andalusian Ministry of
Health) and the Talentia Postdoctoral Fellowship Program
(grant agreement 267226; Andalusian Knowledge Agency;
Andalusian RegionalMinistry of Economy, Innovation, Science
andEmployment) for thePostdoctoralFellowships.
REFERENCES
Adamczyk, B., Tharmalingam, T., and Rudd, P. M. (2012). Glycans as cancer
biomarkers. Biochim. Biophys. Acta 1820, 1347–1353. doi: 10.1016/j.bbagen.
2011.12.001
Agner,S.C.,Rosen,M.a.,englander,s., tomaszewski, j.e., feldman,m.d.,zhang,p.,
et al. (2014). computerized imageanalysis for identifying triple-negativebreast
cancersanddifferentiatingthemfromothermolecularsubtypesofbreastcancer
on dynamic contrast-enhancedMR images: a feasibility study.Radiology 272,
91–99.doi:10.1148/radiol.14121031
Agrawal,G.,Su,M.Y.,Nalcioglu,O.,Feig,S.A.,andChen,J.H.(2009).Significance
of breast lesion descriptors in the ACR BI-RADSMRI lexicon. Cancer 115,
1363–1380.doi:10.1002/cncr.24156
Alakhras,M.,Bourne,R.,Rickard,M.,Ng,K.H.,Pietrzyk,M., andBrennan,P.C.
(2013).Digital tomosynthesis:anewfuture forbreast imaging?Clin.Radiol.68,
e225–236.doi:10.1016/j.crad.2013.01.007
Alcantara,D.,Blois, J., andCeacero,C. (2010).Editorial.AllResults J.Biol.1,1–3.
AmericanCollegeofRadiology. (2003).Breast ImagingReportingandDataSystem
Atlas.Reston,VA:BI-RADSAtlas.
Anderson, G., Sprott, H., and Olsen, B. R. (2013). Opinion: publish negative
results. Scientist. Available online at: http://www.the-scientist.com/?articles.
view/articleNo/33968/title/Opinion--Publish-Negative-Results/
Barrett, B. J., Parfrey, P. S., McDonald, J. R., Hefferton, D. M., Reddy, E. R.,
and McManamon, P. J. (1992). Nonionic low-osmolality versus ionic high-
osmolality contrast material for intravenous use in patients perceived to be
at high risk: randomized trial. Radiology 183, 105–110. doi: 10.1148/radiol-
ogy.183.1.1549654
Begley, J. K., Redpath, T.W., Bolan, P. J., andGilbert, F. J. (2012). In vivoproton
magnetic resonance spectroscopy of breast cancer: a review of the literature.
BreastCancerRes.14,207.doi:10.1186/bcr3132
Bolan, P. J. (2013). Magnetic resonance spectroscopy of the breast: current sta-
tus.Magn.Reson. ImagingClin.N.Am.21, 625–639. doi: 10.1016/j.mric.2013.
04.008
Brozek-Pluska, B., Musial, J., Kordek, R., Bailo, E., Dieing, T., and Abramczyk,
H. (2012). Raman spectroscopy and imaging: applications in human
breast cancer diagnosis. Analyst 137, 3773–3780. doi: 10.1039/c2an1
6179f
Burnside,E. S., Sickles,E.A.,Bassett, L.W.,Rubin,D.L., Lee,C.H., Ikeda,D.M.,
etal. (2009).TheACRBI-RADS®experience: learningfromhistory. J.Am.Coll.
Radiol.6,851–860.doi:10.1016/j.jacr.2009.07.023
Caldarella, C., Treglia, G., and Giordano, A. (2014). Diagnostic perfor-
mance of dedicated positron emission mammography using fluorine-18-
fluorodeoxyglucose inwomenwith suspicious breast lesions: ameta-analysis.
Clin.BreastCancer14,241–248.doi:10.1016/j.clbc.2013.12.004
Cheng, Z., Thorek, D. L., andTsourkas, A. (2010). Gadolinium-conjugated den-
drimer nanoclusters as a tumor-targeted T1 magnetic resonance imaging
contrast agent. Angew. Chem. Int. Ed. Engl. 49, 346–350. doi: 10.1002/anie.
200905133
Cho,H.,Alcantara,D.,Yuan,H.,Sheth,R.A.,Chen,H.H.,Huang,P.,etal. (2013).
Fluorochrome-functionalized nanoparticles for imaging DNA in biological
systems.ACSNano7,2032–2041.doi:10.1021/nn305962n
Frontiers inChemistry | ChemicalEngineering December2014 |Volume2 |Article112 | 114
Cancer Nanotheranostics
What Have We Learnd So Far?
- Title
- Cancer Nanotheranostics
- Subtitle
- What Have We Learnd So Far?
- Authors
- João Conde
- Pedro Viana Baptista
- Jesús M. De La Fuente
- Furong Tian
- Editor
- Frontiers in Chemistry
- Date
- 2016
- Language
- English
- License
- CC BY 4.0
- ISBN
- 978-2-88919-776-7
- Size
- 21.0 x 27.7 cm
- Pages
- 132
- Keywords
- Nanomedicine, Nanoparticles, nanomaterials, Cancer, heranostics, Immunotherapy, bioimaging, Drug delivery, Gene Therapy, Phototherapy
- Categories
- Naturwissenschaften Chemie