Page - X - in Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Image of the Page - X -
Text of the Page - X -
ListofFigures
2.17. Comparisonofmeasurementdelaysusingthe
fiberoptic sensor (FOS)andthe infrared
camera (IRC). . . . . . . . . . . . . . . . . . . . . . . 34
2.18. Temperaturecomparisonbetween FOSand
IRC (after compensation). . . . . . . . . . . . . . . . 36
3.1. Sketchof microwave heating setup. . . . . . . . . . 38
3.2. Diagram ofblack-boxmodeling. . . . . . . . . . . . 39
3.3. Illustrationof the linearsystemidentification
process. . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4. Neural network structure . . . . . . . . . . . . . . . 66
3.5. Illustrationof differentactivationfunctions. . . . . . 68
3.6. Diagram ofrecurrentneuralnetwork . . . . . . . . . 70
3.7. Principleofsupervised learning . . . . . . . . . . . . 71
3.8. Neural network approaches used in thisdissertation. 76
3.9. Notationsused to denote the input andthe
outputof different nodes. . . . . . . . . . . . . . . . 78
4.1. PrincipleofMPC control algorithms. . . . . . . . . . 86
4.2. Temperaturecontrol systemof HEPHAISTOS
using MPC. . . . . . . . . . . . . . . . . . . . . . . . 87
4.3. Practically implemented GAbased nonlinear
MPCsystem. . . . . . . . . . . . . . . . . . . . . . . . 101
4.4. Twocontrol structuresofNN controller. . . . . . . . 102
4.5. Weightsupdate in the standard SPSAalgorithm. . . 105
4.6. Semi-directcontrolstructure. Thebluedashed
linerepresents two possible learningapproaches. . 107
4.7. Procedures in thesemi-direct NNcontrol
system (part 1). . . . . . . . . . . . . . . . . . . . . . 108
4.7. Procedures in thesemi-direct NNcontrol
system (part 2). . . . . . . . . . . . . . . . . . . . . . 109
4.8. Reinforcement learning controller. . . . . . . . . . . 112
4.9. Actor-critic control system[GBLB12]. . . . . . . . . 121
4.10. HybridTD learningcontrol system. . . . . . . . . . 123
4.11. Target temperaturecurveduringtheheatingprocess . 124
4.12. Procedures in theWatkins’Q(λ) learningcontrol . . 126
4.13. Areadiscretization. . . . . . . . . . . . . . . . . . . . 129
4.14. Procedures in thehybrid multi-agentQ(λ)
learning control system. . . . . . . . . . . . . . . . . 131
x . . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. . .
. .
. . .
. . .
. . .
.
back to the
book Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources"
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
- Title
- Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
- Author
- Yiming Sun
- Publisher
- KIT Scientific Publishing
- Location
- Karlsruhe
- Date
- 2016
- Language
- English
- License
- CC BY-SA 3.0
- ISBN
- 978-3-7315-0467-2
- Size
- 14.8 x 21.0 cm
- Pages
- 260
- Keywords
- Mikrowellenerwärmung, Mehrgrößenregelung, Modellprädiktive Regelung, Künstliches neuronales Netz, Bestärkendes Lernenmicrowave heating, multiple-input multiple-output (MIMO), model predictive control (MPC), neural network, reinforcement learning
- Category
- Technik