Page - 49 - in Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Image of the Page - 49 -
Text of the Page - 49 -
3.2. Grey-boxModeling
−→
En,m= En,m := 

 E
n,m
x
En,my
En,mz 

 , (3.21)
with
−→ex= ex := 
 10
0 
 , −→ey= ey := 
 01
0 
 , −→ez= ez := 
 00
1 
 .
Therefore the overall superposed electric field at the location −→
En can
bereplacedbythevectorEn, suchas
En= M∑
m=1 vm ·En,m = 

 E
n
x
Eny
Enz 

 , (3.22)
where
Enx=v1E n,1
x +v2E
n,2
x + · ··+vMEn,Mx ,
Eny =v1E
n,1
y +v2E
n,2
y + · ··+vMEn,My ,
Enz =v1E
n,1
z +v2E
n,2
z + · ··+vMEn,Mz , (3.23)
and vm (1≤m≤M) is the portion of amplitude of the electric field
fromthem-th feedingsource.
Definingthenewvectorsas
V= [
v1, v2, . . ., vM ]T
,
Enx= [
En,1x ,E
n,2
x , . . .,E
n,M
x ]
,
Eny = [
En,1y ,E
n,2
y , . . .,E
n,M
y ]
,
Enz = [
En,1z ,E
n,2
z , . . .,E
n,M
z ]
, (3.24)
thecomponents in thevectorEn canbeexpressedas
Enx=E n
xV, E
n
y =E
n
yV, E
n
z =E
n
zV. (3.25)
49
To make the electric field easier to use in the following derivations, it
is rewritten inavector form,suchas
back to the
book Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources"
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
- Title
- Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
- Author
- Yiming Sun
- Publisher
- KIT Scientific Publishing
- Location
- Karlsruhe
- Date
- 2016
- Language
- English
- License
- CC BY-SA 3.0
- ISBN
- 978-3-7315-0467-2
- Size
- 14.8 x 21.0 cm
- Pages
- 260
- Keywords
- Mikrowellenerwärmung, Mehrgrößenregelung, Modellprädiktive Regelung, Künstliches neuronales Netz, Bestärkendes Lernenmicrowave heating, multiple-input multiple-output (MIMO), model predictive control (MPC), neural network, reinforcement learning
- Category
- Technik