Page - 73 - in Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Image of the Page - 73 -
Text of the Page - 73 -
3.3. Black-boxModeling
3.3.2. NeuralNetworkModelingofHEPHAISTOS
In this section, the neural network modeling of HEPHAISTOS is ex-
plained. In the beginning, the fundamental principles of supervised
learning are introduced. Then the neural network structures used in
HEPHAISTOS are presented. In the end, the learning (training) algo-
rithmsusedin thisdissertationarediscussed.
Fundamentals inSupervisedLearning
Thetrainingdataset is representedby
D = {(
UNN(1),Yd(1)
)
, (
UNN(2),Yd(2)
)
, .. . , (
UNN(Q),Yd(Q)
)}
,
UNN(q) = [
uNN,1(q), uNN,2(q), . . ., uNN,M(q) ]T
, 1≤ q≤Q,
Yd(q) = [
Yd,1(q), Yd,2(q), . . ., Yd,N(q) ]T
, 1≤ q≤Q.
The numberQ indicates the size of the training data set D. The vector
UNN(q) is the input vector and Yd(q) is the corresponding desired
(correct)outputvector. Thetargetofsupervisedlearningis tofindthe
weightw∗ that makes the estimated output of the networkYNN(q) =
f ( w∗,UNN(q)
)
equivalent toYd(q) forall1≤ q≤Q.
Inordertofindthebestweightvectorw∗,anobjectiveorcostfunction
Jhastobedefined,whichmeasurestheerrorbetweentherealandde-
siredoutputs. Thereareseveraldifferentwaystodefinethecost func-
tion. For instance, a simple choice is to use theL1-norm [HDB+96],
suchas
JL1= Q∑
q=1 ‖YNN(q)−Yd(q)‖ . (3.71)
This L1-norm formed cost function is intuitive, but not very com-
monly used in practice because the derivative is not easy to calculate.
Themostcommoncostfunctionusedinsupervisedlearningisthefol-
lowingL2-norm[HDB+96]
JL2= min 1
2Q Q∑
q=1 ( YNN(q)−Yd(q) )T( YNN(q)−Yd(q)
)
, (3.72)
73
back to the
book Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources"
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
- Title
- Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
- Author
- Yiming Sun
- Publisher
- KIT Scientific Publishing
- Location
- Karlsruhe
- Date
- 2016
- Language
- English
- License
- CC BY-SA 3.0
- ISBN
- 978-3-7315-0467-2
- Size
- 14.8 x 21.0 cm
- Pages
- 260
- Keywords
- Mikrowellenerwärmung, Mehrgrößenregelung, Modellprädiktive Regelung, Künstliches neuronales Netz, Bestärkendes Lernenmicrowave heating, multiple-input multiple-output (MIMO), model predictive control (MPC), neural network, reinforcement learning
- Category
- Technik