Page - 78 - in Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Image of the Page - 78 -
Text of the Page - 78 -
3. ModelingMicrowaveHeating
GiventhedatasetD, thecompletelearningprocessofthestandardon-
lineSGBPalgorithmisshownbelow. Thenotationsusedintheupdate
ofweightsareshowninfigure 3.9anddefinedin table 3.3.
zp = ∑ wp,j xj Np
Output Layer
YNN,p = fo (zp)
Nj
Hidden Layer
xj = g (zj)
i
zj = ∑ wj,i uNN,i
or
zj = ∑ wj,i xi
i
j
Figure3.9. Notations used to denote the input and the output
nodes.
1. Initialization:
initializeallweightsanddetermineactivationfunctionsfoandg.
2. Ateachtimekwithk≥2:
arrange the inputandoutputof theNNestimatoras
UNN(k) = [ Yr(k−1)
U(k−1) ]
, Yd(k) = Yr(k). (3.77)
Forward calculation: calculate the input x and output z of all
nodes in this neural network using the current weights and input
vectorUNN(k), accordingtodefinitions infigure 3.9andtable 3.3.
Backward error propagation: starting from the output layer, cal-
culate the localgradientvector
δo(k) = [
δo1(k), δ o
2(k) . .. δ o
N(k) ]
, (3.78)
where theelement isgivenas [Hay98]
δoi(k) = ( YNN,i(k)−Yd,i(k) ) f′o(zi(k)), 1≤ i≤N. (3.79)
78 ofdifferent
back to the
book Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources"
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
- Title
- Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
- Author
- Yiming Sun
- Publisher
- KIT Scientific Publishing
- Location
- Karlsruhe
- Date
- 2016
- Language
- English
- License
- CC BY-SA 3.0
- ISBN
- 978-3-7315-0467-2
- Size
- 14.8 x 21.0 cm
- Pages
- 260
- Keywords
- Mikrowellenerwärmung, Mehrgrößenregelung, Modellprädiktive Regelung, Künstliches neuronales Netz, Bestärkendes Lernenmicrowave heating, multiple-input multiple-output (MIMO), model predictive control (MPC), neural network, reinforcement learning
- Category
- Technik