Page - 80 - in Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Image of the Page - 80 -
Text of the Page - 80 -
3. ModelingMicrowaveHeating
with
[
wl+1(k−1)]= 




 wl+11,1 (k−1) wl+11,2 (k−1) · ·· wl+11,Nl(k−1)
wl+12,1 (k−1) wl+12,2 (k−1) · ·· wl+12,Nl(k−1)
... ... ... ...
wl+1Nl+1,1(k−1) wl+1Nl+1,2(k−1) · ·· wl+1Nl+1,Nl(k−1)





 .
(3.82)
The L + 1-th hidden layer is defined as the output layer
( [
wL+1(k−1)]= [wo(k−1)],Nl+1=No).
Weightupdate: forweightsof linksconnectingtotheoutputlayer,
theupdaterule isgivenby[Hay98]
[wo(k)] = [wo(k−1)]−η ·(xL(k)δo(k))T, (3.83)
with theoutputvector isdefinedas
xL(k) = [
xL1(k), x L
2(k), . . ., x
L
NL(k) ]T
. (3.84)
For weights of links only connecting with hidden layers, the up-
daterule
isgivenby[Hay98][
wl(k) ]
= [
wl(k−1)]−η ·(xl−1(k)δl(k))T, 1≤ l≤L (3.85)
with theoutputvector isdefinedas
xl(k) = [
xl1(k), x l
2(k), . . ., x
l
Nl (k) ]T
. (3.86)
When the value l = 1, the vector xl−1(k) is defined as the input
vectorof theNN
x0(k) =UNN(k). (3.87)
3. Procedure2 isexecutedonceper timestep.
There are mainly two rounds of calculations in the backpropagation
algorithm. One is the forward pass which calculate the output of
each node from the input layer to the output layer. The other one
80
back to the
book Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources"
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
- Title
- Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
- Author
- Yiming Sun
- Publisher
- KIT Scientific Publishing
- Location
- Karlsruhe
- Date
- 2016
- Language
- English
- License
- CC BY-SA 3.0
- ISBN
- 978-3-7315-0467-2
- Size
- 14.8 x 21.0 cm
- Pages
- 260
- Keywords
- Mikrowellenerwärmung, Mehrgrößenregelung, Modellprädiktive Regelung, Künstliches neuronales Netz, Bestärkendes Lernenmicrowave heating, multiple-input multiple-output (MIMO), model predictive control (MPC), neural network, reinforcement learning
- Category
- Technik