Page - 109 - in Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
Image of the Page - 109 -
Text of the Page - 109 -
4.2. IntelligentControl
Ateach timek (k>1) :
repeat
1 Receive themeasuredtemperaturevectorY(k);
2 Calculate theestimationRMSEof theNN estimator asχ(k),
andupdate theestimationerror indexvia
χind= 0.95 ·χind+0.05 ·χ(k).
3 Update theweightsof theNNestimatorusing the EKF
algorithm;
if Mod(Ct,2) = 0 then
if χind < χth then
4 UsetheNNestimator to train the NN controller fornt
times togetnewwc(k)andupdate the training timer
nt=nt+1;
5 Calculate thenewcontrol input
U(k) =G(Ytar(k),Y(k),wc(k));
else
4 Reset the trainingtimernt= 1;
5 Calculate the trainingcontrol input as
w+(k) =w(k)+c(k)∆(k),
U(k) =U+(k) =G (
Yt(k),Y(k),w (+)(k) )
;
6 Update thecounternumberCt=Ct+1;
else
4 Update theweightsof theNNcontroller by
h(wc(k)) = J (
Y(k),U(+)(k) )
c(k)∆(k)
wc(k+1) =wc(k)−α(k) ·h(wc(k));
5 Update thecounternumberCt=Ct+1;
6 Calculate thenewcontrol input
U(k) =G(Ytar(k),Y(k),wc(k));
until the endof the controlprocess;
Figure4.7. Procedures in thesemi-directNNcontrol system(part2).
109
back to the
book Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources"
Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
- Title
- Adaptive and Intelligent Temperature Control of Microwave Heating Systems with Multiple Sources
- Author
- Yiming Sun
- Publisher
- KIT Scientific Publishing
- Location
- Karlsruhe
- Date
- 2016
- Language
- English
- License
- CC BY-SA 3.0
- ISBN
- 978-3-7315-0467-2
- Size
- 14.8 x 21.0 cm
- Pages
- 260
- Keywords
- Mikrowellenerwärmung, Mehrgrößenregelung, Modellprädiktive Regelung, Künstliches neuronales Netz, Bestärkendes Lernenmicrowave heating, multiple-input multiple-output (MIMO), model predictive control (MPC), neural network, reinforcement learning
- Category
- Technik