Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Technik
Emerging Technologies for Electric and Hybrid Vehicles
Page - 61 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 61 - in Emerging Technologies for Electric and Hybrid Vehicles

Image of the Page - 61 -

Image of the Page - 61 - in Emerging Technologies for Electric and Hybrid Vehicles

Text of the Page - 61 -

Energies 2017,10, 1217 efficientwayor turningsomeof theseoff can increase therangeofavehicle. LEDscanbeusedfor lightingbecauseof theirhighefficiency [169]. Table 30 showsdifferentmethodsof recovering the energy lostduringbraking. Table30.Differentmethodsof recoveringenergyduringbraking[169]. StorageSystem EnergyConverter RecoveredEnergy Application Electric storage Electricmotor/generator ~50% BEV,HEV Compressedgasstorage Hydraulicmotor >70% Heavy-dutyvehicles Flywheel Rotationalkineticenergy >70% FormulaOne(F1) racing Gravitationalenergystorage Springstoragesystem - Train Aerodynamic techniquesareusedinvehicles toreducethedragcoefficient,whichreduces the requiredpower. Powerneededtoovercomethedragforce is: Pd= 1 2 ρv3ACd (7) HereCd is thedragcoefficient, thepower toovercomethedrag increases if thedragcoefficient’s value increases. TheToyotaPriusclaimsadragcoefficientof0.24 for the2017model, thesameas the TeslaModelS.The2012NissanLeafSLhadthisvaluesetat0.28 [171]. To ensure efficient use of the available energy, different energymanagement schemes canbe employed[6]. Presenteddifferentcontrol strategies forenergymanagementwhich includedsystems usingfuzzylogic,deterministic ruleandoptimizationbasedschemes.Gengetal.,workedonaplug-in serieshybridFCV.Theobjectiveof their control systemwas to consume theminimumamountof hydrogenwhilepreservingthehealthof theprotonexchangemembranefuel cell (PEMFC)[172]. The control systemwascomprisedof twostages; thefirst stagedeterminedtheSOCandcontrol references, whereas the second stage determined the PEMFChealth parameters. Thismethodproved to be capableof reducingthehydrogenconsumptionwhile increasing the life-timeto the fuel cell.Another intelligentmanagementsystemisexaminedin [173]byMurpheyetal.,whichusedmachine learning combinedwithdynamicprogrammingtodetermineenergyoptimizationstrategies for roadwayand traffic-congestionscenarios for real-timeenergyflowcontrolofahybridEV.Their systemissimulated usingaFordEscapeHybridmodel; it revealed the systemwaseffective infindingout congestion level, optimal battery power and optimal speed. Geng et al., proposed a controlmechanism for energymanagement for a PHEVemploying batteries and amicro turbine in [174]. In thiswork, they introducedanewparameter, named the“energy ratio”, toproduce theequivalent factor (EF) whichwasused in thepopularEquivalentConsumptionMinimizationStrategy(ECMS) todeduce the minimumdrivingcostbyapplyingPontryagin’sminimumprinciple. Thismethodclaimedtoreduce thecostby7.7–21.6%. In [175],Mouraetal., exploredefficientways tosplitpowerdemandamong differentpowersourcesofmid-sizedsedanPHEVs. Theyusedanumberofdrivecycles, rather thana singleone,assessedthepotentialofdepletingcharge inacontrolledmanner,andconsideredrelative pricingof fuelandelectricity foroptimalpowermanagementof thevehicle. 11.ControlAlgorithms Control systemsarecrucial forproper functioningofEVsandassociatedsystems. Sophisticated controlmechanismsarerequiredforprovidingasmoothandsatisfactoryridequality, forproviding the enoughpowerwhen required, estimating the energyavailable fromtheon-board sources and usingthemproperly tocover themaximumdistance, charging inasatisfactory timewithoutcausing burdenonthegrid,andassociatedtasks.Differentalgorithmsareusedin theseareas,andas theEV culture isbecomingmoremainstream,needforbetteralgorithmsareontherise. Drivingcontrolsystemsarerequiredtoassistthedriverinkeepingthevehicleincontrol,especially athighspeedsandinadverseconditionssuchasslipperysurfacescausedbyrainorsnow.Driving 61
back to the  book Emerging Technologies for Electric and Hybrid Vehicles"
Emerging Technologies for Electric and Hybrid Vehicles
Title
Emerging Technologies for Electric and Hybrid Vehicles
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03897-191-7
Size
17.0 x 24.4 cm
Pages
376
Keywords
electric vehicle, plug-in hybrid electric vehicle (PHEV), energy sources, energy management strategy, energy-storage system, charging technologies, control algorithms, battery, operating scenario, wireless power transfer (WPT)
Category
Technik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Emerging Technologies for Electric and Hybrid Vehicles