Page - 158 - in Emerging Technologies for Electric and Hybrid Vehicles
Image of the Page - 158 -
Text of the Page - 158 -
energies
Article
ImprovedBatteryParameterEstimationMethod
ConsideringOperatingScenariosfor
HEV/EVApplications
JufengYang1,2,BingXia2,3,YunlongShang2,4,WenxinHuang1,*andChrisMi2,*
1 DepartmentofElectricalEngineering,NanjingUniversityofAeronauticsandAstronautics,
Nanjing211106,China; jufeng.yang@mail.sdsu.edu
2 DepartmentofElectricalandComputerEngineering,SanDiegoStateUniversity,
SanDiego,CA92182,USA;bixia@eng.ucsd.edu(B.X.); shangyunlong@mail.sdu.edu.cn(Y.S.)
3 DepartmentofElectricalandComputerEngineering,UniversityofCaliforniaSanDiego,
SanDiego,CA92093,USA
4 SchoolofControlScienceandEngineering,ShandongUniversity, Jinan250061,China
* Correspondence: huangwx@nuaa.edu.cn(W.H.); cmi@sdsu.edu(C.M.);
Tel.:+86-138-5149-7182 (W.H.);+1-619-594-3741 (C.M.)
AcademicEditor: RuiXiong
Received: 3October2016;Accepted: 13December2016;Published: 22December2016
Abstract:Thispaperpresentsan improvedbatteryparameterestimationmethodbasedontypical
operating scenarios in hybrid electric vehicles and pure electric vehicles. Comparedwith the
conventionalestimationmethods, theproposedmethodtakesboththeconstant-currentchargingand
thedynamicdrivingscenarios intoaccount,andtwoseparatesetsofmodelparametersareestimated
through different parts of the pulse-rest test. Themodel parameters for the constant-charging
scenario are estimated from thedata in thepulse-chargingperiods,while themodel parameters
for thedynamicdriving scenario are estimated from thedata in the rest periods, and the length
of the fitted dataset is determined by the spectrum analysis of the load current. In addition,
theunsaturatedphenomenoncausedbythe long-termresistor-capacitor (RC)network isanalyzed,
andthe initialvoltageexpressionsof theRCnetworks in thefitting functionsare improvedtoensure
ahighermodelfidelity. Simulationandexperimentresultsvalidatedthe feasibilityof thedeveloped
estimationmethod.
Keywords: lithium-ionbattery;operatingscenario;equivalentcircuitmodeling;parameterestimation
1. Introduction
Lithium-ionbatterieshavebeenwidelyused in the energy storage systemsofhybrid electric
vehicles (HEVs)andpureelectricvehicles (EVs)becauseof their lowself-dischargerate,highenergy
andpowerdensities. Toensure the safeandreliableoperationof lithium-ionbatteries, thebattery
managementsystem(BMS) isof significant importance. Themain taskofaBMSincludesmonitoring
ofcritical states, faultdiagnosisandthermalmanagement [1–7].
1.1. Reviewof theLiterature
The performance of a BMS is highly dependent on the accurate description of battery
characteristics. Hence, a proper battery model, which can not only correctly characterize the
electrochemical reactionprocesses, but alsobe easily implemented in embeddedmicrocontrollers,
isnecessary forahigh-performanceBMS.Thereare twocommonformsofbatterymodelsavailable in
the literature: theelectrochemicalmodelandtheequivalentcircuitmodel (ECM).Theelectrochemical
Energies 2017,10, 5;doi:10.3390/en10010005 www.mdpi.com/journal/energies158
Emerging Technologies for Electric and Hybrid Vehicles
- Title
- Emerging Technologies for Electric and Hybrid Vehicles
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-191-7
- Size
- 17.0 x 24.4 cm
- Pages
- 376
- Keywords
- electric vehicle, plug-in hybrid electric vehicle (PHEV), energy sources, energy management strategy, energy-storage system, charging technologies, control algorithms, battery, operating scenario, wireless power transfer (WPT)
- Category
- Technik