Page - 160 - in Emerging Technologies for Electric and Hybrid Vehicles
Image of the Page - 160 -
Text of the Page - 160 -
Energies 2017,10, 5
5VKRUW5VKRUW 5ORQJ5ORQJ
2&92&9 5LQ5LQ
&ORQJ&ORQJ&VKRUW&VKRUW
7LPH V
7LPH V 9ROWDJH9ROWDJH
&XUUHQW&XUUHQW 9W9W
,,
9
9
9
9
,
, ,
,
$$ %%
Figure1.Thesecondorderequivalentcircuitmodel (ECM).OCV, opencircuitvoltage.
Generally speaking, batteries usually operate in two scenarios in automotive applications:
The constant-current (CC) charging scenario and thedynamic driving scenario [27]. Usually, the
motions of lithium ions under the continuous external excitation (representing the CC charging
scenario)andthediscontinuousexternalexcitation(representingthedynamicdrivingscenario) show
different characteristics, and this difference is related to the diffusivity of ions. In otherwords,
themodelparameters, especially theRCnetworkparameters, showdiversevaluesunderdifferent
operatingscenarios [21,28]. Therefore,batteryparametersshouldbe identifiedseparatelyaccordingto
theactualoperatingscenarios.Abundant researchworkhasbeenconductedtoseek theaccurateECM
for thespecificoperatingscenario. For thechargingscenario, auniversalmodelbasedonasimple
mathematicalequationwithconstantparameters isproposed[29–31]. Themathematicalequations
includeonepolynomialcomponentandoneor twoexponential functions,andrelevantparameters
canbeobtainedbyfittingcollectedchargingprofiles.Verificationresults inrelated literatureshowthat
theoverallmodeloutputprofilesmatchwellwith theexperimentaldata,but therestill existsobvious
estimationerrorsduringcertainperiods (at thebeginningof theplateauregionandthe last charging
region). This ismainlycausedbytheconstantparametersduringthewholechargingprocesssince
theactualmodelparameters, suchas timeconstants,mayvarygreatlyatdifferentSoC regions [32].
Theworks in [32–34] estimate themodel parameters through the data in the rest periods of the
pulse-rest testatdifferentSoCpoints, andtheestimatedmodelparameterscanbeshownas functions
ofSoC.However, thechargingconcentrationprocessundercontinuousexcitation isdifferent fromthe
chargingrecoveryprocessunder therestperiod[19,35]; thus, theestimatedmodelparametersmaynot
accuratelyrepresent thechargingcharacteristicsof thebattery. For thedynamicdrivingscenario,many
modelingapproacheshavebeenreportedonthebasisofthepulsedischargeanalysis. In[36–38],model
parametersareobtainedbysimplealgebraicoperations. This is straightforward,but largeestimation
errorsexist. Amoreaccuratemethodis tofit thevoltageresponseof thewhole restperiodwithan
exponential function[39–41]. The limitationof thismethodis itspoordynamicperformance. Inorder
to improvethebatterymodelaccuracy,HuandWangin[42]proposea twotime-scale identification
algorithmtoseparate the identificationsofslowandfastbatterydynamics. Thismethodshowsbetter
frequencyresponsematchingwithout increasingcomputationalcomplexity. Xiongin[17]uses thebias
correctionmethodtoensure thebatterymodelpredictionperformance. Thisapproachshowsexcellent
performanceandhighaccuracyagainstuncertainoperatingscenariosandbatterypacks. Insteadof the
conventionalpulse-rest test, [43,44]propose twotypesofapplication-orientedparameterextraction
tests, leadingtoa fastdynamicsbatterymodelwithhighfidelity.Onemajor limitationof thiskindof
160
Emerging Technologies for Electric and Hybrid Vehicles
- Title
- Emerging Technologies for Electric and Hybrid Vehicles
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-191-7
- Size
- 17.0 x 24.4 cm
- Pages
- 376
- Keywords
- electric vehicle, plug-in hybrid electric vehicle (PHEV), energy sources, energy management strategy, energy-storage system, charging technologies, control algorithms, battery, operating scenario, wireless power transfer (WPT)
- Category
- Technik