Page - 167 - in Emerging Technologies for Electric and Hybrid Vehicles
Image of the Page - 167 -
Text of the Page - 167 -
Energies 2017,10, 5
Inorder to further illustrate theaboveanalysis, a thirdorderRCnetworkcircuit is simulated in
MATLAB;twoequivalent timeconstants (τ’short andτ’long)areestimatedfromthedifferentvalueofΔt.
In thesimulation, theresistancesof the threeRCnetworksareall setas1mΩ, andthe timeconstants
arepredeterminedasτ1=40s,τ2=200sandτ3=2000s (τ3>>τ2>τ1). Theappliedexcitationconsists
ofa400-spulse-dischargingcurrentanda2-hrestperiod,andtheamplitudeof thecurrent is20A.
Timeconstantsestimatedbydifferent lengthsof thevoltageresponsearegiven inTable2. It canbe
clearlyseenfromTable2 thatbothτ’short andτ’longdecreasesimultaneouslywith thereducedvalueof
Δt,which isconsistentwith thepreviousanalysis.Hence, toobtain theappropriatevaluesof the time
constants,Δtshouldbepredeterminedproperly,which is illustrated indetailas follows.
Table2.Equivalent timeconstantestimationresultswithdifferentvaluesofΔt.
Δt (s) 7200 3600 1800 1400 1200 1000 900 850 800
τ’short (s) 88.67 67.18 48.53 45.10 43.74 42.59 42.08 41.83 41.63
τ’long (s) 971.0 484.3 284.4 256.7 245.3 235.3 230.9 228.8 226.8
k 1 4.049×10−12 4.395×10−5 0.1448 0.8759 2.154 5.299 8.311 10.41 13.03
1 k represents thedegreeof resistor-capacitor (RC)voltagevariability; thedetailedexpressioncanreferredto in
Equation(13).
DuringΔt, thederivativeofEquation(13)withrespect toτiduringtherestperiod
isexpressedas:∣∣∣∣dVRC,idτi
∣∣∣∣= Δt|VRC,i(0)|τ2i e −Δtτi (11)
whereVRC,i is thevoltageacross the i-thRCnetwork, i∈ {1,2,3, . . . , j},VRC,i(0) is thecorresponding
initial voltage,Ri is the resistanceof the i-thRCnetworkandτi is the timeconstantof the i-thRC
network,which issubject toτ1 <τ2 < . . . <τj.
After thepulse-dischargingperiod,|VRC,i(0)|canbeexpressedas:
|VRC,i(0)|= |I|Ri(1−e− D
τi ) (12)
whereDdenotes the lengthof thepulse-dischargingperiod.
For the twowell-separatedtimeconstantsτiandτi+m (τi+m≥10τiand0<m<j− i), thevoltage
across the shorter termRC networkVRC,i has a larger degree of variabilitywhen satisfying the
followingrequirement:
|dVRC,i/dτi|
|dVRC,i+m/dτi+m|= k (13)
where theconstantkdenotes thedegreeofvariability,andit is subject tok>1.
SubstitutingEquations (11)and(12) intoEquation(13), thevalueofΔtcanbederivedas:
Δt= ln ⎡
⎣ Ri(1−e−Dτt)τ2i+m
kRi+m(1−e− D
τt+m)τ2i ⎤
⎦ τiτi+m
τi+m−τi (14)
In Equation (14), since the values of Ri and Ri+m are nearly of the same order of
magnitude[39,43,46], thevalueofRi/Ri+m canbeneglectedwhencomparedto thevalueofτ2i+m/τ 2
i ;
thus,Δtcanbesimplifiedas:
Δt= ln ⎡
⎣ (1−e−Dτt)τ2i+m
k(1−e− Dτt+m)τ2i ⎤
⎦ τiτi+m
τi+m−τi (15)
167
Emerging Technologies for Electric and Hybrid Vehicles
- Title
- Emerging Technologies for Electric and Hybrid Vehicles
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-191-7
- Size
- 17.0 x 24.4 cm
- Pages
- 376
- Keywords
- electric vehicle, plug-in hybrid electric vehicle (PHEV), energy sources, energy management strategy, energy-storage system, charging technologies, control algorithms, battery, operating scenario, wireless power transfer (WPT)
- Category
- Technik