Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Technik
Emerging Technologies for Electric and Hybrid Vehicles
Page - 171 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 171 - in Emerging Technologies for Electric and Hybrid Vehicles

Image of the Page - 171 -

Image of the Page - 171 - in Emerging Technologies for Electric and Hybrid Vehicles

Text of the Page - 171 -

Energies 2017,10, 5 6R& K K K K 6R& K K K K (a) (b) Figure10.Timeconstantestimationresultswithdifferent lengthsof theexperimentaldataset: (a)τshort; (b)τlong. Afterdeterminingthe lengthof thefittedexperimentaldataset,wecansubsequentlyobtain the resistances. Figure 11 shows theRlong estimation results by the conventional fitting function and the improvedfitting function. It canbe concluded fromFigure 11 that theRlong estimatedby the conventionalfitting function isgenerally less thantheoneestimatedbythe improvedfitting function, because itneglects the (1−e−D/τlong)part. Inorder todemonstrate theadvantageof the improved fittingfunction,data fromthe20thcycleof thedischargingpulse-rest testareadopted. In thiscycle, SoCchangesfrom62%to60%duringthepulse-dischargingperiod, thenkeepsthevalueof60%during the followingrestperiod. Thecurrentprofileof the20thdischargingpulse-rest test isappliedonthe ECMMATLAB/SIMULINKmodel asanexcitation. Figure12a,b shows themodeloutputvoltage responseswith twosetsofestimatedmodelparameters. It canbeseenthat themodelwithparameters estimatedbytheproposedfittingfunctionoutputsbetterestimationresults. The lowervoltageerror is mainlycontributedbythehighervoltagedropacross the long-termRCnetwork,asplottedinFigure12c. Inaddition, therootmeansquareerrors (RMSEs)betweenthemeasuredvoltageandthemodeloutput voltageatdifferentSoCsaregiveninTable3. It canalsobeseenthat themodelparametersestimatedby theproposedfittingfunctionshowabetterperformanceforawiderangeofSoC. 6R& FRQYHQWLRQDO ILWWLQJ IXQFWLRQ LPSURYHG ILWWLQJ IXQFWLRQ Figure11.Rlong estimationresults. Table3.ComparisonofRMSEatdifferentSoC. SoC (%) 10 20 30 40 50 60 70 80 90 RMSE(mV) Conventionalfitting function 1.802 1.714 2.167 1.540 1.268 2.803 2.416 1.558 1.444 Improvedfittingfunction 0.7658 0.7582 0.9707 0.7643 0.5000 1.202 1.242 0.7104 0.6482 171
back to the  book Emerging Technologies for Electric and Hybrid Vehicles"
Emerging Technologies for Electric and Hybrid Vehicles
Title
Emerging Technologies for Electric and Hybrid Vehicles
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03897-191-7
Size
17.0 x 24.4 cm
Pages
376
Keywords
electric vehicle, plug-in hybrid electric vehicle (PHEV), energy sources, energy management strategy, energy-storage system, charging technologies, control algorithms, battery, operating scenario, wireless power transfer (WPT)
Category
Technik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Emerging Technologies for Electric and Hybrid Vehicles