Page - 181 - in Emerging Technologies for Electric and Hybrid Vehicles
Image of the Page - 181 -
Text of the Page - 181 -
Energies 2016,9, 270
optimal sitingofEVCSs isestablishedbyFDMinSection5. Section6performs theEVCSsitingby
employingcombinationweightingandafuzzyGRA-VIKORmodel. Resultsdiscussionandsensitivity
analysisareperformedtochecktherationalityandrobustnessof theproposedmodelandresults in
Section7.ConclusionsaredrawninSection8.
2. LiteratureReview
Theconstructionofelectricvehiclechargingstations is important in thewhole lifecycleof the
electricvehicle industry.Meanwhile,anappropriatesiteandcapacity forEVCScannotonlybenefit
therelatedstakeholders,butalsopromote thesustainabledevelopmentof theEVindustry.Over the
lastdecade,manystudiesrelatedtotheeconomicandenvironmentalbenefit, influenceandtechnology
in theEVindustryhavebeenconducted. Simpson[19]presentedacomparisonof thecosts (vehicle
purchasecostsandenergycosts) andbenefits (reducedpetroleumconsumption)ofPHEVsrelated
tohybrid-electricandconventionalvehicles. By2011 littlewasknownabout theeconomicrationale
forpublic fast chargers forelectricvehicles,Schroeder et al. [20]aimedtoprovideaninsight into the
business case for this technology in a case study forGermany. Hawkins et al. [21] developedand
providedatransparentlifecycleinventoryofconventionalvehiclesandelectricvehicles,whichverified
thatEVshavedecreasedglobalwarmingpotential (GWP)relative toconventionaldieselorgasoline
vehicles.Matsuhashietal. [22]developedaprocess-relationalmodeltoestimatelifecycleCO2emissions
fromelectricvehicles (EVs)andgasolinevehicles (GVs),which indicatedthat themanufactureand
drivingofEVsproduces lessCO2 emissions thanthatofGVs. Putrus et al. [23]analyzedthe impactof
electricvehiclesonexistingpowerdistributionnetworks, includingsupply/demandmatchingand
potentialviolationsofstatutoryvoltage limits,powerqualityandimbalance.Clement-Nyns et al. [24]
pointedout thatuncoordinatedpowerconsumptionona local scalewould leadtogridproblems,and
computedtheoptimalchargingprofileofplug-inhybridelectricvehiclesbyminimizingthepower
lossesandmaximizingthemaingrid load.Mets et al. [25]presentedsmartenergycontrol strategies
basedonquadraticprogrammingforchargingPHEVs,aimingtominimize thepeak loadandflatten
theoverall loadprofile. Rivera et al. [26]proposesanovelarchitecture forPEVDCchargingstations
byusingagrid-tiedneutralpointclampedconverter.
Research focusedonsitingandsizingofEVCSshasreceivedmuchmoreattention inrecentyears.
Liu et al. [27]presentedamodifiedprimal-dual interiorpointalgorithmtosolve theoptimalsizingof
EVchargingstations, inwhichenvironmental factorsandtheserviceradiusofEVchargingstations
were considered. Wirges et al. [28]presentedadynamic spatialmodelof a charging infrastructure
developmentforelectricvehicles intheGermanmetropolitanregionofStuttgart,andgeneratedseveral
scenariosofacharging infrastructuredevelopmentuntil 2020. Jia et al. [29] introducedanoptimization
process for the sizing and siting of electric vehicle charging stationswithminimized integrated
cost of charging stations and consumers’ costs, inwhich the chargingdemandand roadnetwork
structurewere variables. Aiming atminimizingusers’ losses on theway to the charging station,
Ge et al. [30] determines the best location by using a Genetic Algorithm (GA) considering
the traffic density and the charging station’s capacity constraints. Xi et al. [31] developed a
simulation–optimizationmodel todetermine the locationofelectricvehiclechargers, andexploredthe
interactionsbetweentheoptimizationcriterionandtheavailablebudget. Sathaye et al. [32]utilized
a continuous facility locationmodel for optimally siting electric vehicle infrastructure inhighway
corridors,andcarefullydealtwith the influenceofdemanduncertainty. Pashajavid et al. [33]proposed
ascenariooptimizationbasedonaparticleswarmoptimization(PSO)algorithmtoallocatecharging
stationsforplug-inelectricvehicles(PEVs),andamultivariatestochasticmodelingmethodologybased
onthenotionofcopula isprovidedinorder todevelopaprobabilisticmodelof the loaddemanddue
toPEVs.Zi etal. [34]presentedanadaptiveparticleswarmoptimization(APSO)algorithmtooptimize
thesitingandsizingofelectricvehiclechargingstations,whichconsideredgeographic information,
constructioncostsandrunningcosts. Inorder to installalternative fuelchargingstationsatsuitable
locations foralternative-fuelvehicles (AFVs),You et al. [35]developedamixed-integerprogramming
181
Emerging Technologies for Electric and Hybrid Vehicles
- Title
- Emerging Technologies for Electric and Hybrid Vehicles
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-191-7
- Size
- 17.0 x 24.4 cm
- Pages
- 376
- Keywords
- electric vehicle, plug-in hybrid electric vehicle (PHEV), energy sources, energy management strategy, energy-storage system, charging technologies, control algorithms, battery, operating scenario, wireless power transfer (WPT)
- Category
- Technik