Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Technik
Emerging Technologies for Electric and Hybrid Vehicles
Page - 205 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 205 - in Emerging Technologies for Electric and Hybrid Vehicles

Image of the Page - 205 -

Image of the Page - 205 - in Emerging Technologies for Electric and Hybrid Vehicles

Text of the Page - 205 -

Energies 2016,9, 594 Note that theaimof theobjective is tobring thevaluesofzn,m ascloseaspossible tozero,where large valuesareaddressedfirst inorder tominimize theEuclideandistance (i.e.,due toquadratic terms). Toease thediscussionandnotation further,weomit the indexn (weconsidera singlehouse), andwemay assumew.l.o.g. that a := an = 1 and d := dn = M. This leads to the following optimizationproblem: Problem1. min x √√√√ M∑ m=1 z2m, (1) subject to M ∑ m=1 xm=C, (2) zm= pm+xm−qm, form∈{1,. . . ,M}, (3) 0≤ xm≤ x¯, form∈{1,. . . ,M}. (4) Onecommonlyconsideredobjective is tocreateapowerprofilethat isasflataspossible, i.e., toset all elementsof thevector q toaconstant (e.g., theaverageof the loads). Awell-knownpropertyof Problem1is thatall constantvectors q=(q,q, . . . ,q) leadto thesameoptimal result x, hence,wemay use q= 0 (andthus z= p+ x,which is the total load) toease thenotation. Severalpapers studyalgorithms that cansolve thisproblemoptimally. An intuitiveapproach is theso-calledvalleyfillingapproach [16]. Thisapproach isdemonstratedgraphically inFigure1, whereinanEV(arrivingat18:00, tobe fullychargedat07:00) is chargedwith thegoal toobtainaflat profile (i.e., q= 0 asmentionedbefore). Theoptimal solution xflattens the total houseprofile by charging insuchawaythat the“valleys”arefilleduptoacertainfill levelZ. Thisoptimalfill levelZ dependsontheshapesof the“valleys”andtheamountC tobecharged. InFigure1,C corresponds to thegrayarea.Note thatZ canalsobe interpretedas theoptimalminimalmismatchbetweenthe obtained anddesiredprofile thatwehave to accept. Ifwehave a lowermismatch in someother interval (i.e., zm<Z), thisneeds tobecompensated insomeother interval byamismatcheven greater thanZ (i.e.,z >Z),whichis, in termsofProblem1, lessflatandthussuboptimal.Chargingup to the levelZ (i.e., zm≥Z)makes sure that theEVbattery is fully chargedexactlyat thedeadline without introducingpeaks. 18:00 07:00 200 400 600 Z Time NoEV( p) House+EV( p+ x) Figure1.OptimalEVplanning. In [16], a line search tofindthevalueZ isproposed. Adifferentapproach is takenbyvander Klauwetal. [4]. Theydeterminethe intervals inwhichnochargingshouldtakeplace,afterwhichthey canstraightforwardlycalculateZ. Theiralgorithmfindstheoptimalplanning inO(M logM) time. TheEVchargingproblemfalls inamoregeneralclassofproblemsthatarereferredtoas“resource allocationproblems” [18]. HochbaumandHong [19] study several resource allocationproblems, andtheypresentanalgorithmforageneralizedversionofProblem1,whichalsocantake intoaccount 205
back to the  book Emerging Technologies for Electric and Hybrid Vehicles"
Emerging Technologies for Electric and Hybrid Vehicles
Title
Emerging Technologies for Electric and Hybrid Vehicles
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03897-191-7
Size
17.0 x 24.4 cm
Pages
376
Keywords
electric vehicle, plug-in hybrid electric vehicle (PHEV), energy sources, energy management strategy, energy-storage system, charging technologies, control algorithms, battery, operating scenario, wireless power transfer (WPT)
Category
Technik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Emerging Technologies for Electric and Hybrid Vehicles