Page - 283 - in Emerging Technologies for Electric and Hybrid Vehicles
Image of the Page - 283 -
Text of the Page - 283 -
Energies 2016,9, 997
thedefinedtypicaldrivingcycle. Inaddition, thismethodcannotensureoptimalglobalparameters.
Therefore, it isnecessary toadoptanoptimizationmethodthatcanautomaticallysearchtheglobally
optimizedthresholdparameters for theenergymanagementstrategy.
The optimization of key parameters for logic threshold energymanagement strategies is a
mathematicalnonlinearproblemwithmanyvariableconstraints. Thegeneticalgorithmwasapplied
inoptimizingvariousgoverningparametersofhybridelectricvehicles (HEVs)andthe fueleconomy
was improved significantly [3–6]. Themulti-objectivegenetic algorithmwasadopted tooptimize
thecontrolparametersof theHEVfor improvingthefueleconomyandemissionperformance[7,8].
Lietal.utilizedamodifiednon-dominatedsortinggeneticalgorithm-II toeffectivelyoptimizethelogic
thresholdcontrol strategyparametersof theHEVtominimize theequivalent fuel consumption[9].
Lietal. appliedahybridgeneticalgorithm(HGA),whichcombinesanenhancedgeneticalgorithm
with simulatedannealing, inoptimizing thepowertrainandcontrolparameters ofplug-inhybrid
electric bus simultaneously. Simulation results show that HGAhas a better convergence speed
andglobal searchingability [10]. Theparticle swarmoptimization (PSO)algorithmwasapplied to
search theoptimalvalueof thepower systemandcontrolparameters ofHEVto improve the fuel
economy[11–13]. Inorder toachieveabetter fuel economyandemissionperformance,Dengetal.
presentedanoptimizationmethodfor logic thresholdcontrol strategyparametersofaparallelHEV
using thesimulatedannealingparticle swarmoptimization [14].Wangetal. utilizedevolutionary
algorithm in conjunctionwithan instantaneousoptimal energymanagement strategy tooptimize
thepropulsion systemparameters aswell as the energy control parameters for plug-inHEV [15].
Zhangetal. used differential evolution algorithm to globally optimize the plug-in HEV control
parameters [16]. Long et al. optimized the key component and control parameters by using the
beesalgorithm[17]. Chrisetal. showedthat theDIvidedRECTangle (DIRECT)algorithmhasabetter
optimaleffectcomparedwiththegeneticalgorithm,simulatedannealing,PSOandotheralgorithmsby
test,becauseitcancovertheglobalspaceforparameteroptimizationwithoutmissinganyoptimization
value [18].
TheDIRECTalgorithm[19]doesnot requireaclearexpressionof theobjective functionequation
aswellasderivative information,butdecidesonthenextsearchingareabasedontheestimatedvalue
of the functionat thesamplingpointsofeach iterationandthedivisionofahyper-rectangle. Thus, it is
ideal forsimulationof theblack-boxfunctionoptimization[20].However, it requiresa largenumber
ofsamples in theregiontoensure thefinalglobaloptimum.Besides, thenumberofestimatedfunction
is relatively larger than that of the gradient-basedoptimizationmethod. Inpractical engineering
optimization, themeta-modeloptimization isoftenverycomplexandthesimulationtimeis relatively
long[21]. Insteadof thecomplexmeta-model, anapproximatemodelbuiltby thesamplingpointsof
eachDIRECTalgorithmiteration isutilized, therebyreducingthenumberofsimulations, improving
theconvergencespeed, shorteningtheoptimizationtime,andsavingcomputingresources.
Asmentionedabove, theadvantageofDIRECTalgorithmis toobtain theglobaloptimization
result comparedwithotheroptimizationalgorithm.Besides, italsohas lowcomputationalburden,
rapidconvergence. So it ismeaningful toutilize theDIRECTalgorithmtoacquire theglobaloptimized
valueof theparametersofHEVenergymanagementstrategy.However,a fewworkshavebeenfound
tooptimize thecontrol strategyparametersofhybridelectricvehicleutilizing theDIRECTalgorithm.
Rousseauet al. andHeet al. establishedapowercomponentparameteroptimizationmodel for a
HEVtominimize the fuel consumption. Theconstraintsare thedynamicdesignspecificationsand
variables, namely the enginepower, batterypower, battery capacity, batterybusvoltage, etc. The
DIRECTalgorithm is utilized to optimize these parameters. Whereas, the logic threshold control
strategyparametershavenotbeenanalyzedandoptimized [22,23]. Pandayetal. utilizedDIRECT
algorithmtooptimizepartialparametersofHEVcontrol strategy, suchasstateofcharge in thebattery,
engine idlespeed,engineondurationandpowerdemand[24].
Thegeneral comparisonofdifferentalgorithms ispresented inTable1. Theresearchworkswhich
optimizetheparametersofHEVenergymanagementstrategyutilizingGA,PSO,etc.mayleadto local
283
Emerging Technologies for Electric and Hybrid Vehicles
- Title
- Emerging Technologies for Electric and Hybrid Vehicles
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03897-191-7
- Size
- 17.0 x 24.4 cm
- Pages
- 376
- Keywords
- electric vehicle, plug-in hybrid electric vehicle (PHEV), energy sources, energy management strategy, energy-storage system, charging technologies, control algorithms, battery, operating scenario, wireless power transfer (WPT)
- Category
- Technik