Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Technik
Emerging Technologies for Electric and Hybrid Vehicles
Page - 283 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 283 - in Emerging Technologies for Electric and Hybrid Vehicles

Image of the Page - 283 -

Image of the Page - 283 - in Emerging Technologies for Electric and Hybrid Vehicles

Text of the Page - 283 -

Energies 2016,9, 997 thedefinedtypicaldrivingcycle. Inaddition, thismethodcannotensureoptimalglobalparameters. Therefore, it isnecessary toadoptanoptimizationmethodthatcanautomaticallysearchtheglobally optimizedthresholdparameters for theenergymanagementstrategy. The optimization of key parameters for logic threshold energymanagement strategies is a mathematicalnonlinearproblemwithmanyvariableconstraints. Thegeneticalgorithmwasapplied inoptimizingvariousgoverningparametersofhybridelectricvehicles (HEVs)andthe fueleconomy was improved significantly [3–6]. Themulti-objectivegenetic algorithmwasadopted tooptimize thecontrolparametersof theHEVfor improvingthefueleconomyandemissionperformance[7,8]. Lietal.utilizedamodifiednon-dominatedsortinggeneticalgorithm-II toeffectivelyoptimizethelogic thresholdcontrol strategyparametersof theHEVtominimize theequivalent fuel consumption[9]. Lietal. appliedahybridgeneticalgorithm(HGA),whichcombinesanenhancedgeneticalgorithm with simulatedannealing, inoptimizing thepowertrainandcontrolparameters ofplug-inhybrid electric bus simultaneously. Simulation results show that HGAhas a better convergence speed andglobal searchingability [10]. Theparticle swarmoptimization (PSO)algorithmwasapplied to search theoptimalvalueof thepower systemandcontrolparameters ofHEVto improve the fuel economy[11–13]. Inorder toachieveabetter fuel economyandemissionperformance,Dengetal. presentedanoptimizationmethodfor logic thresholdcontrol strategyparametersofaparallelHEV using thesimulatedannealingparticle swarmoptimization [14].Wangetal. utilizedevolutionary algorithm in conjunctionwithan instantaneousoptimal energymanagement strategy tooptimize thepropulsion systemparameters aswell as the energy control parameters for plug-inHEV [15]. Zhangetal. used differential evolution algorithm to globally optimize the plug-in HEV control parameters [16]. Long et al. optimized the key component and control parameters by using the beesalgorithm[17]. Chrisetal. showedthat theDIvidedRECTangle (DIRECT)algorithmhasabetter optimaleffectcomparedwiththegeneticalgorithm,simulatedannealing,PSOandotheralgorithmsby test,becauseitcancovertheglobalspaceforparameteroptimizationwithoutmissinganyoptimization value [18]. TheDIRECTalgorithm[19]doesnot requireaclearexpressionof theobjective functionequation aswellasderivative information,butdecidesonthenextsearchingareabasedontheestimatedvalue of the functionat thesamplingpointsofeach iterationandthedivisionofahyper-rectangle. Thus, it is ideal forsimulationof theblack-boxfunctionoptimization[20].However, it requiresa largenumber ofsamples in theregiontoensure thefinalglobaloptimum.Besides, thenumberofestimatedfunction is relatively larger than that of the gradient-basedoptimizationmethod. Inpractical engineering optimization, themeta-modeloptimization isoftenverycomplexandthesimulationtimeis relatively long[21]. Insteadof thecomplexmeta-model, anapproximatemodelbuiltby thesamplingpointsof eachDIRECTalgorithmiteration isutilized, therebyreducingthenumberofsimulations, improving theconvergencespeed, shorteningtheoptimizationtime,andsavingcomputingresources. Asmentionedabove, theadvantageofDIRECTalgorithmis toobtain theglobaloptimization result comparedwithotheroptimizationalgorithm.Besides, italsohas lowcomputationalburden, rapidconvergence. So it ismeaningful toutilize theDIRECTalgorithmtoacquire theglobaloptimized valueof theparametersofHEVenergymanagementstrategy.However,a fewworkshavebeenfound tooptimize thecontrol strategyparametersofhybridelectricvehicleutilizing theDIRECTalgorithm. Rousseauet al. andHeet al. establishedapowercomponentparameteroptimizationmodel for a HEVtominimize the fuel consumption. Theconstraintsare thedynamicdesignspecificationsand variables, namely the enginepower, batterypower, battery capacity, batterybusvoltage, etc. The DIRECTalgorithm is utilized to optimize these parameters. Whereas, the logic threshold control strategyparametershavenotbeenanalyzedandoptimized [22,23]. Pandayetal. utilizedDIRECT algorithmtooptimizepartialparametersofHEVcontrol strategy, suchasstateofcharge in thebattery, engine idlespeed,engineondurationandpowerdemand[24]. Thegeneral comparisonofdifferentalgorithms ispresented inTable1. Theresearchworkswhich optimizetheparametersofHEVenergymanagementstrategyutilizingGA,PSO,etc.mayleadto local 283
back to the  book Emerging Technologies for Electric and Hybrid Vehicles"
Emerging Technologies for Electric and Hybrid Vehicles
Title
Emerging Technologies for Electric and Hybrid Vehicles
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03897-191-7
Size
17.0 x 24.4 cm
Pages
376
Keywords
electric vehicle, plug-in hybrid electric vehicle (PHEV), energy sources, energy management strategy, energy-storage system, charging technologies, control algorithms, battery, operating scenario, wireless power transfer (WPT)
Category
Technik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Emerging Technologies for Electric and Hybrid Vehicles