Page - 4 - in Differential Geometrical Theory of Statistics
Image of the Page - 4 -
Text of the Page - 4 -
Entropy2016,18, 370
ontheconfigurationspaceofthesystemisnotaLiealgebraofsymmetriesoftheLagrangian.Moreover
in its intrinsic formthatequationuses theconceptofHamiltonianmomentummappresentedlater,
inSection5. Since theEuler–Poincaréequation isnotusedin the followingsections, thereadercan
skip thecorrespondingsubsectionathisorherfirst reading.
1.2.Notations
Thenotationsusedaremoreorlessthosegenerallyusednowindifferentialgeometry. Thetangent
andcotangentbundles toasmoothmanifoldMaredenotedbyTMandT∗M, respectively,andtheir
canonicalprojectionsbyτM :TM→MandπM :T∗M→M. Thevectorspacesofk-multivectorsand
k-formsonMaredenotedbyAk(M)andΩk(M), respectively,withk∈Zand,ofcourse,Ak(M)={0}
andΩk(M) = {0} if k< 0 and if k> dimM, k-multivectors and k-formsbeing skew-symmetric.
The exterior algebras ofmultivectors and formsof all degrees aredenotedby A(M) =⊕kAk(M)
andΩ(M)=⊕kΩk(M), respectively. Theexteriordifferentiationoperatorofdifferential formsona
smoothmanifoldM isdenotedbyd :Ω(M)→Ω(M). The interiorproductof adifferential form
η∈Ω(M)byavectorfieldX∈A1(M) isdenotedbyi(X)η.
Let f : M → N be a smoothmapdefinedon a smoothmanifold M, with values in another
smoothmanifoldN. Thepull-backofa formη∈Ω(N)byasmoothmap f : M→N isdenotedby
f∗η∈Ω(M).
Asmooth, time-dependentvectorfieldonthesmoothmanifoldM isasmoothmapX :R×M→TM
suchthat, foreach t∈Randx∈M,X(t,x)∈TxM, thevectorspace tangent toMatx.When, forany
x∈M,X(t,x)doesnotdependon t∈R,X isasmoothvectorfield in theusual sense, i.e., anelement
inA1(M). Ofcoursea time-dependentvectorfieldcanbedefinedonanopensubsetofR×M instead
thanonthewholeR×M. Itdefinesadifferentialequation
dϕ(t)
dt =X (
t,ϕ(t) )
, (1)
said tobeassociated toX. The (full)flowofX is themapΨX,definedonanopensubsetofR×R×M,
taking itsvalues inM, suchthat foreach t0∈Randx0∈M theparametrizedcurve t →ΨX(t,t0,x0)
is themaximal integral curveofEquation (1) satisfyingΨ(t0,t0,x0) = x0. When t0 and t ∈R are
fixed, themapx0 →ΨX(t,t0,x0) isadiffeomorphism,definedonanopensubsetofM (whichmay
beempty)andtaking itsvalues inanotheropensubsetofM,denotedbyΨX(t,t0).WhenX is in facta
vectorfield in theusualsense (notdependentontime),ΨX(t,t0)onlydependson t− t0. Insteadof the
fullflowofXwecanuse its reducedflowΦX,definedonanopensubsetofR×Mandtaking itsvalues
inM, relatedto the fullflowΨX by
ΦX(t,x0)=ΨX(t,0,x0) , ΨX(t,t0,x0)=ΦX(t− t0,x0) .
For each t ∈R, themap x0 →ΦX(t,x0) =ΨX(t,0,x0) is a diffeomorphism, denotedbyΦXt ,
definedonanopensubsetofM (whichmaybeempty)ontoanotheropensubsetofM.
When f : M→N is a smoothmapdefinedona smoothmanifoldM,withvalues inanother
smoothmanifoldN, thereexistsasmoothmapTf :TM→TN calledtheprolongationof f tovectors,
which foreachfixedx∈M linearlymapsTxM intoTf(x)N.When f isadiffeomorphismofMontoN,
Tf isan isomorphismofTMontoTN. Thatpropertyallowsus todefinethe canonical liftsofavector
fieldX inA1(M) to the tangentbundleTMandto thecotangentbundleT∗M. Indeed, foreach t∈R,
ΦXt isadiffeomorphismofanopensubsetofMontoanotheropensubsetofM. ThereforeTΦ X
t isa
diffeomorphismofanopensubsetofTMontoanotheropensubsetofTM. It turnsout thatwhen t
takesallpossiblevalues inR thesetofalldiffeomorphismsTΦXt is thereducedflowofavectorfield
XonTM,which is the canonical liftofX to the tangentbundleTM.
Similarly, the transpose (TΦX−t)T ofTΦX−t isadiffeomorphismofanopensubsetof thecotangent
bundleT∗MontoanotheropensubsetofT∗M, andwhen t takesallpossiblevalues inR thesetofall
4
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik