Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 4 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 4 - in Differential Geometrical Theory of Statistics

Image of the Page - 4 -

Image of the Page - 4 - in Differential Geometrical Theory of Statistics

Text of the Page - 4 -

Entropy2016,18, 370 ontheconfigurationspaceofthesystemisnotaLiealgebraofsymmetriesoftheLagrangian.Moreover in its intrinsic formthatequationuses theconceptofHamiltonianmomentummappresentedlater, inSection5. Since theEuler–Poincaréequation isnotusedin the followingsections, thereadercan skip thecorrespondingsubsectionathisorherfirst reading. 1.2.Notations Thenotationsusedaremoreorlessthosegenerallyusednowindifferentialgeometry. Thetangent andcotangentbundles toasmoothmanifoldMaredenotedbyTMandT∗M, respectively,andtheir canonicalprojectionsbyτM :TM→MandπM :T∗M→M. Thevectorspacesofk-multivectorsand k-formsonMaredenotedbyAk(M)andΩk(M), respectively,withk∈Zand,ofcourse,Ak(M)={0} andΩk(M) = {0} if k< 0 and if k> dimM, k-multivectors and k-formsbeing skew-symmetric. The exterior algebras ofmultivectors and formsof all degrees aredenotedby A(M) =⊕kAk(M) andΩ(M)=⊕kΩk(M), respectively. Theexteriordifferentiationoperatorofdifferential formsona smoothmanifoldM isdenotedbyd :Ω(M)→Ω(M). The interiorproductof adifferential form η∈Ω(M)byavectorfieldX∈A1(M) isdenotedbyi(X)η. Let f : M → N be a smoothmapdefinedon a smoothmanifold M, with values in another smoothmanifoldN. Thepull-backofa formη∈Ω(N)byasmoothmap f : M→N isdenotedby f∗η∈Ω(M). Asmooth, time-dependentvectorfieldonthesmoothmanifoldM isasmoothmapX :R×M→TM suchthat, foreach t∈Randx∈M,X(t,x)∈TxM, thevectorspace tangent toMatx.When, forany x∈M,X(t,x)doesnotdependon t∈R,X isasmoothvectorfield in theusual sense, i.e., anelement inA1(M). Ofcoursea time-dependentvectorfieldcanbedefinedonanopensubsetofR×M instead thanonthewholeR×M. Itdefinesadifferentialequation dϕ(t) dt =X ( t,ϕ(t) ) , (1) said tobeassociated toX. The (full)flowofX is themapΨX,definedonanopensubsetofR×R×M, taking itsvalues inM, suchthat foreach t0∈Randx0∈M theparametrizedcurve t →ΨX(t,t0,x0) is themaximal integral curveofEquation (1) satisfyingΨ(t0,t0,x0) = x0. When t0 and t ∈R are fixed, themapx0 →ΨX(t,t0,x0) isadiffeomorphism,definedonanopensubsetofM (whichmay beempty)andtaking itsvalues inanotheropensubsetofM,denotedbyΨX(t,t0).WhenX is in facta vectorfield in theusualsense (notdependentontime),ΨX(t,t0)onlydependson t− t0. Insteadof the fullflowofXwecanuse its reducedflowΦX,definedonanopensubsetofR×Mandtaking itsvalues inM, relatedto the fullflowΨX by ΦX(t,x0)=ΨX(t,0,x0) , ΨX(t,t0,x0)=ΦX(t− t0,x0) . For each t ∈R, themap x0 →ΦX(t,x0) =ΨX(t,0,x0) is a diffeomorphism, denotedbyΦXt , definedonanopensubsetofM (whichmaybeempty)ontoanotheropensubsetofM. When f : M→N is a smoothmapdefinedona smoothmanifoldM,withvalues inanother smoothmanifoldN, thereexistsasmoothmapTf :TM→TN calledtheprolongationof f tovectors, which foreachfixedx∈M linearlymapsTxM intoTf(x)N.When f isadiffeomorphismofMontoN, Tf isan isomorphismofTMontoTN. Thatpropertyallowsus todefinethe canonical liftsofavector fieldX inA1(M) to the tangentbundleTMandto thecotangentbundleT∗M. Indeed, foreach t∈R, ΦXt isadiffeomorphismofanopensubsetofMontoanotheropensubsetofM. ThereforeTΦ X t isa diffeomorphismofanopensubsetofTMontoanotheropensubsetofTM. It turnsout thatwhen t takesallpossiblevalues inR thesetofalldiffeomorphismsTΦXt is thereducedflowofavectorfield XonTM,which is the canonical liftofX to the tangentbundleTM. Similarly, the transpose (TΦX−t)T ofTΦX−t isadiffeomorphismofanopensubsetof thecotangent bundleT∗MontoanotheropensubsetofT∗M, andwhen t takesallpossiblevalues inR thesetofall 4
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics