Web-Books
in the Austria-Forum
Austria-Forum
Web-Books
Naturwissenschaften
Physik
Differential Geometrical Theory of Statistics
Page - 10 -
  • User
  • Version
    • full version
    • text only version
  • Language
    • Deutsch - German
    • English

Page - 10 - in Differential Geometrical Theory of Statistics

Image of the Page - 10 -

Image of the Page - 10 - in Differential Geometrical Theory of Statistics

Text of the Page - 10 -

Entropy2016,18, 370 whereπN : T∗N → N is the canonical projectionof the cotangent bundle and J : T∗N →G∗ is a smoothmapwhoserestriction toeachfibreT∗xNof thecotangentbundle is linear, andis the transpose of themapX →ϕ(x,X)=ψ(X)(x). Remark4. Thehomomorphismψof theLie algebraG into theLie algebraA1(N)of smoothvectorfieldsonN isanactionof thatLiealgebra, in thesensedefinedbelowDefinition11. Thatactioncanbecanonically lifted into aHamiltonianactionofG onT∗N,endowedwith its canonical symplectic formdθN Definition13. Themap J is in fact aHamiltonianmomentummap for thatHamiltonianactionProposition5. LetLL=dvertL :TN→T∗NbetheLegendremapdefinedinDefinition1. Theorem3 (Euler–PoincaréEquation). With theabovedefinednotations, letγ : [t0,t1]→Nbeasmooth parametrizedcurve inNandV : [t0,t1]→G bea smoothparametrizedcurve such that, for each t∈ [t0,t1], ψ ( V(t) )( γ(t) ) = dγ(t) dt . (3) Thecurveγ is apossiblemotionof theLagrangiansystemif andonly ifV satisfies the equation( d dt −ad∗V(t) )( J◦LL◦ϕ ( γ(t),V(t) ))− J◦d1L(γ(t),V(t))=0. (4) The interestedreaderwillfindaproofof that theoremin local coordinates in theoriginalNoteby Poincaré [29].More intrinsicproofscanbefoundin[12,30].Anotherproof ispossible, inwhichthat theoremisdeducedfromtheEuler-CartanTheorem1. Remark5. Equation (3) is called the compatibility conditionandEquation (4) is theEuler–Poincaré equation. It canbewrittenunder the equivalent form( d dt −ad∗V(t) )( d2L ( γ(t),V(t) ))− J◦d1L(γ(t),V(t))=0. (5) Examplesofapplicationsof theEuler–Poincaréequationcanbefoundin[5,6,12,30]and, foran application in thermodynamics, [31]. 4.TheHamiltonianFormalism TheLagrangian formalism can be applied to any smooth Lagrangian. Its application yields secondorderdifferential equationsonR×N (in local coordinates, theEuler–Lagrange equations)which in generalarenot solvedwith respect to the secondorderderivatives of theunknown functionswith respect to time. Theclassicalexistenceandunicity theoremsfor thesolutionsofdifferentialequations (suchas theCauchy-Lipschitz theorem) therefore cannotbeapplied to these equations. Under theadditional assumption that theLagrangian ishyper-regular, averyclever changeof variablesdiscoveredbyWilliamRowanHamilton (LagrangeobtainedhoweverHamilton’sequations beforeHamilton, butonly inaspecial case, for theslow“variationsofconstants”suchas theorbital parametersofplanets in thesolarsystem[32,33]).Hamilton[21,22]allowsanewformulationof these equations in the frameworkof symplecticgeometry. TheHamiltonian formalismdiscussedbelowis the useof thesenewequations. Itwas latergeneralized independentlyof theLagrangianformalism. 10
back to the  book Differential Geometrical Theory of Statistics"
Differential Geometrical Theory of Statistics
Title
Differential Geometrical Theory of Statistics
Authors
Frédéric Barbaresco
Frank Nielsen
Editor
MDPI
Location
Basel
Date
2017
Language
English
License
CC BY-NC-ND 4.0
ISBN
978-3-03842-425-3
Size
17.0 x 24.4 cm
Pages
476
Keywords
Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
Categories
Naturwissenschaften Physik
Web-Books
Library
Privacy
Imprint
Austria-Forum
Austria-Forum
Web-Books
Differential Geometrical Theory of Statistics