Page - 18 - in Differential Geometrical Theory of Statistics
Image of the Page - 18 -
Text of the Page - 18 -
Entropy2016,18, 370
with the following convention: ψ is a Lie algebras homomorphismwhenwe take for Lie algebraG of theLie
groupGtheLiealgebraor right invariantvectorfieldsonGifΨ is anactiononthe left, and theLiealgebraof
left invariantvectorfieldsonGifΨ is anactiononthe right.
Proof. IfΨ isanactionofGonMonthe left (respectively,on theright), thevectorfieldonGwhich is
right invariant (respectively, left invariant)andwhosevalueat e isX, andtheassociatedfundamental
vectorfieldXMonM, arecompatiblebythemapg →Ψg(x). Therefore themapψ :G→A1(M) isa
Liealgebrashomomorphism, ifwetake fordefinitionof thebracketonG thebracketof right invariant
(respectively, left invariant)vectorfieldsonG.
Definition12. WhenMisapresymplectic (or a symplectic, or aPoisson)manifold, anactionΨof aLiegroup
G (respectively, anactionψ of aLie algebraG) on themanifoldMis called apresymplectic (or a symplectic,
or aPoisson)action if for eachg∈G,Ψg is apresymplectic, or a symplectic, or aPoissondiffeomorphismofM
(respectively, if for eachX∈G,ψ(X) is apresymplectic, or a symplectic, or aPoissonvectorfieldonM.
Definition13. AnactionψofaLiealgebaG onapresymplecticorsymplecticmanifold(M,ω), oronaPoisson
manifold (M,Λ), is said tobeHamiltonian if for eachX∈G, thevectorfieldψ(X)onMisHamiltonian.
AnactionΨ (eitheron the left or on the right) of aLiegroupGonapresymplectic or symplecticmanifold
(M,ω), oronaPoissonmanifold(M,Λ), is saidtobeHamiltonian if thatactionispresymplectic, orsymplectic,
orPoisson (according to the structureofM), and if inaddition theassociatedactionof theLiealgebraG ofG
isHamiltonian.
Remark9. AHamiltonianactionof aLiegroup, orof aLie algebra, onapresymplectic, symplectic orPoisson
manifold, is automatically a presymplectic, symplectic or Poisson action. This result immediately follows
fromProposition3.
5.3.MomentumMapsofHamiltonianActions
Proposition 5. Let ψ be a Hamiltonian action of a finite-dimensional Lie algebra G on a presymplectic,
symplectic orPoissonmanifold (M,ω)or (M,Λ). There exists a smoothmap J :M→G∗, taking itsvalues in
thedual spaceG∗ of theLie algebraG, such that for eachX∈G theHamiltonianvectorfieldψ(X)onMadmits
asHamiltonian the function JX :M→R, definedby
JX(x)= 〈
J(x),X 〉
, x∈M .
Themap J is calledamomentummap for theLie algebraactionψ.Whenψ is theactionof theLie algebra
G of aLiegroupGassociated toaHamiltonianactionΨof aLiegroupG, J is calledamomentummap for the
HamiltonianLiegroupactionΨ.
Theproofof that result,which iseasy, canbefoundforexample in [8–10].
Remark10. Themomentummap J isnotunique:
• when (M,ω) is a connectedsymplecticmanifold, J isdetermineduptoadditionof anarbitraryconstant
element inG∗;
• when (M,Λ) is a connectedPoissonmanifold, themomentummap J is determinedup to additionof an
arbitraryG∗-valuedsmoothmapwhich, coupledwithanyX∈G, yieldsaCasimirof thePoissonalgebra
of (M,Λ), i.e., a smooth function onMwhosePoisson bracketwith any other smooth function on that
manifold is the function identically equal to0.
5.4.Noether’sTheoreminHamiltonianFormalism
Theorem5 (Noether’sTheoreminHamiltonianFormalism). LetXf andXg be twoHamiltonianvector
fields on a presymplectic or symplecticmanifold (M,ω), or on aPoissonmanifold (M,Λ), which admit as
18
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik