Page - 22 - in Differential Geometrical Theory of Statistics
Image of the Page - 22 -
Text of the Page - 22 -
Entropy2016,18, 370
ThePoincaré-Cartan1-form ̂L intheLagrangianformalism,or ̂H intheHamiltonianformalism,
depends on the choice of a particular reference frame, made for using the Lagrangian or the
Hamiltonianformalism.But theirexteriordifferentials, thepresymplectic formsd̂Lord̂H,donot
dependonthat choice,moduloasimplechangeofvariables in theevolutionspace.
Souriaudefinedthispresymplectic forminaframeworkmoregeneral thanthoseofLagrangian
orHamiltonianformalisms,andcalled it theLagrange form. In thismoregeneral setting, itmaynot
beanexact2-form. SouriauproposedasanewPrinciple, theassumption that it alwaysprojectson
thespaceofmotionsof thesystemsasa symplectic form, even inrelativisticmechanics inwhich the
definitionofanevolutionspace isnotclear.Hecalledthisnewprinciple theMaxwellPrinciple.
Bargmannprovedthat thesymplecticcohomologyof theGalileangroupisofdimension1,and
Souriauproved that the cohomology class of its action on themanifold ofmotions of an isolated
classical (non-relativistic)mechanical systemcanbe identifiedwith the totalmassof thesystem[14],
Chapter III,p. 153.
Readers interested in theGalileangroupandmomentummapsof itsactionsarereferredto the
recentbookbydeSaxcéandVallée [45].
6. StatisticalMechanicsandThermodynamics
6.1. BasicConcepts inStatisticalMechanics
DuringtheXVIII–thandXIX–thcenturies, the idea thatmaterialbodies (fluidsaswellassolids)
areassembliesof avery largenumberof small,movingparticles, began tobeconsideredbysome
scientists,notablyDanielBernoulli (1700–1782),RudolfClausius (1822–1888), JamesClerkMaxwell
(1831–1879)andLudwigEduardoBoltzmann(1844–1906),asareasonablepossibility.Attempswere
madetoexplain thenatureofsomemeasurablemacroscopicquantities (forexample the temperature
ofamaterialbody, thepressureexertedbyagasonthewallsof thevessel inwhich it is contained),
andthe lawswhichgovernthevariationsof thesemacroscopicquantities,byapplicationof the lawsof
classicalmechanics to themotionsof theseverysmallparticles. Described in the frameworkof the
Hamiltonianformalism, thematerialbodyisconsideredasaHamiltoniansystemwhosephasespace
isaveryhighdimensional symplecticmanifold (M,ω), sinceanelementof that spacegivesaperfect
informationabout thepositionsandthevelocitiesofall theparticlesof thesystem.Theexperimental
determinationof theexact stateof thesystembeing impossible,oneonlycanuse theprobabilityof
presence, at each instant, of the state of the system invariousparts of thephase space. Scientists
introducedtheconceptofa statistical state,definedbelow.
Definition 14. Let (M,ω) be a symplecticmanifold. A statistical state is a probabilitymeasure μ on the
manifoldM.
6.1.1. TheLiouvilleMeasureonaSymplecticManifold
On each symplecticmanifold (M,ω), with dimM = 2n, there exists a positivemeasure λω,
called the Liouville measure. Let us briefly recall its definition. Let (U,ϕ) be aDarboux chart of
(M,ω)Section4.4.1. TheopensubsetUofM is,bymeansof thediffeomorphismϕ, identifiedwith
an open subset ϕ(U) ofR2n onwhich the coordinates (Darboux coordinates)will be denoted by
(p1, . . . ,pn,x1, . . . ,xn).With this identification, theLiouvillemeasure (restricted toU) is simply the
Lebesguemeasureon theopen subset ϕ(U)ofR2n. In otherwords, for eachBorel subset Aof M
containedinU,wehave
λω(A)= ∫
ϕ(A) dp1 . . . dpndx1 . . . dxn .
Onecaneasilycheckthat thisdefinitiondoesnotdependonthechoiceof theDarbouxcoordinates
(p1, . . . ,pn,x1, . . . ,xn)onϕ(A). ByusinganatlasofDarbouxchartson (M,ω), onecaneasilydefine
λω(A) foranyBorel subsetAofM.
22
Differential Geometrical Theory of Statistics
- Title
- Differential Geometrical Theory of Statistics
- Authors
- Frédéric Barbaresco
- Frank Nielsen
- Editor
- MDPI
- Location
- Basel
- Date
- 2017
- Language
- English
- License
- CC BY-NC-ND 4.0
- ISBN
- 978-3-03842-425-3
- Size
- 17.0 x 24.4 cm
- Pages
- 476
- Keywords
- Entropy, Coding Theory, Maximum entropy, Information geometry, Computational Information Geometry, Hessian Geometry, Divergence Geometry, Information topology, Cohomology, Shape Space, Statistical physics, Thermodynamics
- Categories
- Naturwissenschaften Physik